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Abstract— Motivated by the need for dynamical analysis
and model reduction in stiff stochastic chemical systems, we
focus on the development of methodologies for analysis of
the dynamical structure of singularly-perturbed stochastic
dynamical systems. We outline a formulation based on random
dynamical systems theory. We demonstrate the analysis for a
model two-dimensional stochastic dynamical system built on
an underlying deterministic system with a tailored fast-slow
structure, and an analytically known slow manifold, employing
multiplicative brownian motion noise forcing.

I. INTRODUCTION

At a fundamental level, chemical reactions are the result
of molecular collisions. Given the random nature of these
collisions, the progress of chemical processes at the smallest
scales is stochastic, and is adequately described by the
Chemical Master Equation (CME) [9]. In a computational
setting, the CME can be simulated directly only for sys-
tems involving a sufficiently small number of species, and
molecule counts. Alternately, the Stochastic Simulation Al-
gorithm (SSA) [6,8] can be used to simulate a jump Markov
process, involving integer-valued species molecule counts,
with resulting trajectories whose statistics accurately model
the CME solution. These stochastic effects are averaged out
when system size and molecule counts are at the contin-
uum scale, resulting in the familiar deterministic Ordinary
Differential Equation (ODE) system models for chemical
systems. An intermediate, mesoscale, regime exists, when
molecule counts are large, e.g. O(103), but not sufficiently
so to make the continuum approximation viable. In this
regime, the Fokker-Planck equation can be used to simulate
the evolution of the probability density function (PDF) of
states, or the Chemical Langevin Equation (CLE) [5] can
be used to simulate state trajectories [7]. This regime is
frequently encountered in models of reaction processes in
biological systems, as well as in models of catalytic reaction
processes in the vcinity of micro/nano-scale features at gas-
solid interfaces.

The mesoscale regime, and particularly the CLE, is the
focus of this work. More specifically, we are interested
in developing methods for dynamical analysis and model
reduction in stiff stochastic chemical systems governed by
the CLE. From a dynamical perspective, these systems, as
is true for chemical models at all scales, can exhibit a

significant degree of stiffness, resulting from the large range
of time-scales of the modeled reaction processes [3]. More-
over, the underlying chemical kinetic models can be quite
large, involving large numbers of species and reactions.
Accordingly, there is a strong need for understanding the
dynamical landscape of these systems, and for development
of associated robust model reduction strategies. There has
been a significant amount of work in this area [1,10,12-14].

In the present work, we describe our work in this
area, building on the existing literature. We formulate the
stochastic differential equation (SDE) mathematical setting
for singularly perturbed stochastic chemical systems, and
outline our initial steps towards a random dynamical system
(RDS) framework to study the dynamics of these systems.
The RDS framework has key advantages as outlined below.
We discuss this framework and demonstrate its use for dy-
namical analysis, and identification of underlying manifolds
in a stochastic version of the Davis-Skodje problem [4],
where a simple analytical manifold is embedded in a two-
dimensional model system.

II. MATHEMATICAL SETTING

A. Singular Perturbation

Consider a system involving two well-separated
timescales:
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where ¢ is a small parameter. Since % can be much larger
than %, y is called the fast variable and x is called the
slow variable.

System (1) behaves singularly in the limit € — 0 and the
results depend on the way this limit is performed. If we

simply set € = 0, it degenerates to the reduced system
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We assume that there exists a differentiable manifold with
equation y = y*(x) on which g(z,y*(x);0) = 0 for all
x. Then y = y*(x) is called a slow manifold [2], and the
dynamics on it are described by the reduced equation
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For long times, solutions of equations (1) remain in an
e—neighborhood of the slow manifold, and are thus well
approximated by the reduced equation (3) [11,16].

To study the effect of noise on the slow-fast system
(1), we perturb both equations with noise, with different
intensities due to different timescales. Since the diffusive
nature of Brownian motion causes paths to spread like /%,
we choose the following scaling of the noise intensities:
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in which u? and 02 measure (rate of diffusion)?/the speed
of drift for X and Y respectively, and W (¢) denotes the
standard Brownian motion. Here the parameters y, o and €
are considered to be small.

B. Methodology

To study the effect of noise on the invariant manifold of
a randomly perturbed system, the traditional stochastic ap-
proach is to solve the Fokker-Planck equation for stationary
solutions. This is usually done numerically by integrating
the system forward in time and then finding the time average
to obtain the probability density function (PDF). However,
such an approach provides only statistical information, not
the geometric details of the invariant manifold. We propose,
rather, to use the RDS approach to study the geometric be-
havior of random invariant manifolds of stochastic chemical
systems.

One major advantage of the RDS approach is that it is
based on path-wise analysis rather than a simple ensemble
of realizations. Moreover, the RDS approach is a pullback
approach, in which the system runs from a time in the past
until the present time, instead of integrating forward in time.
By looking at the system in this pullback point of view, the
geometric structures associated with the invariant manifold
of stochastic systems emerge naturally, as the RDS theory
is based on random invariant measures.

III. A BENCHMARK MODEL - STOCHASTIC
DAVIS-SKODIJE SYSTEM

The Davis and Skodje (D-S) model [4,15] consists of a
two-dimensional system which models a spatially homoge-
neous premixed reactor and is given by
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where v (1/7 corresponds to ) measures the stiffness of
the system. The system has one stable equilibrium (0, 0)
and one stable exact slow manifold y*(z) = 7.

Our purpose is to study the effect of noise on the fast-
slow system (6) - (7). For the system to make physical sense,

we choose multiplicative noise to ensure solutions are non-
negative, and obtain the stochastic Davis-Skodje system:
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Since system (6) - (7) has one unique exact slow man-
ifold, we expect that the main effect of the noise terms
pX(t)dW(t) and o,/7Y (t)dW(t) is to cause solutions
to fluctuate around their deterministic counterpart, and ap-
proach to a “random slow manifold” after a certain period of
time. We will construct explicitly the random slow manifold
of system (8) - (9) by using the random dynamical system
approach.
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