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Abstract— Certain reaction-specific CSP data are shown to
be especially useful for model reductions.

I. STATEMENT OF THE PROBLEM

Consider the following general initial-value problem:

dy
dt

= g(y; ε), y(t = 0) = ỹ, (1)

where both y and g are N -dimensional column vectors,
the components of g(y; ε) are given algebraic functions of
y, and ε is a small dimensionless parameter. The y initial
value is denoted by ỹ and is arbitrary. We are interested
in the small ε case when (1) is known to be stiff. We shall
show that for general chemical kinetics problems certain
reaction-specific data are most useful for doing CSP model
reductions, yielding results that are very easy to interpret.

For chemical kinetics problems, g(y; ε) is usually given
in the following form:

g(y; ε) =
R∑

r=1

αrΩr(y; kr), (2)

where the αr’s are N -dimensional column vectors, and R
is the total number of chemical reactions in the reaction
system. The physical dimensions of the elements of αr

are the same as that of the corresponding elements of y,
while the physical dimensions of all the Ωr(y; kr)’s are
reciprocal time. For each of the r-th reaction, the elements
of αr are proportional to the stoichiometric coefficients,
Ωr(y; kr) is the net reaction rate, and kr is the kinetic rate
parameter. Usually, Ωr(y; kr) is proportional to kr and its
y dependence is nonlinear. For most real world problems,
the αr’s dependence on y, if any, is weak, and R is often
much bigger than N—so many αr’s are linearly dependent.
Equation (1) is stiff when M > 0 reactions are much
faster than all others. The stiffness of (1) is symbolically
represented by the dimensionless parameter ε in g(y; ε).
In the present paper, we exploit the fact that both αr and
Ωr(y; kr) are reaction-specific entities which are chemi-
cally/physically meaningful to knowledgeable investigators.

II. THE CSP SIMPLIFIED REDUCED MODEL

When there are M linearly independent fast reactions,
CSP [1], [2], [3], [4] introduces a dimensionless N × N
fast subspace projection matrix Qfast(M) as follows:

Qfast(M) ≡
M∑

m=1

ambm, (3)

where the am’s and the bm’s are M pairs of the fast
subspace’s column and row basis vectors which are linearly
independent and have been CSP-refined at least once. They
are—by definition—orthonormal to each other:

bm � am′ = δm
m′ , m,m′ = 1, . . . ,M, (4)

where � denotes the inner product operator and δm
m′ denotes

the Kronecker Delta.
CSP provides iterative refinement procedures to find good

quality am’s and bm’s. The right-hand side of (1) is
partitioned using a good quality Qfast(M):

g(y; ε) = gfast(y; ε) + gslow(y; ε), (5a)
gfast(y; ε) ≡ Qfast(M)� g(y; ε), (5b)
gslow(y; ε) ≡ (I − Qfast(M))� g(y; ε), (5c)

and I is the identify matrix. CSP shows that gfast(y; ε)
is dominant only during the initial fast transient. After the
fast transient is exhausted (assuming the system is stable),
gfast(y; ε) is O(ε) in comparison to gslow(y; ε). The CSP-
derived simplified reduced model and initial condition for
the original given problem in the slow epoch are then:

dy
dt

= gslow(y; ε) +O(ε), (6)

gfast(ỹslow; ε) = O(ε), ỹslow ≡ y(t = O(ε)).

Any solution y(t) of the above non-stiff initial-value prob-
lem is guaranteed by CSP to automatically stay inside the
slow subspace defined by:

gfast(y(t); ε) = O(ε), t > O(ε). (7)

The quality of the CSP-derived simplified reduced model—
as measured by the smallness of the O(ε) terms above—
depends on the quality of the am’s and bm’s in Qfast(M).

III. REACTION-SPECIFIC CSP DATA

Equation (2) clearly associates the column vector αr with
the r-th reaction. We now associate the following row vector
βr with the r-th reaction:

βr ≡ τr
∂Ωr(y; kr)

∂y
= βr(y), r = 1, . . . , R, (8a)

where τr, a most interesting reaction-specific entity with
time as its physical dimension, is defined by:

τr ≡
1

∂Ωr

∂y �αr

= τr(y, kr), r = 1, . . . , R. (8b)



We next define Γr
r′(y), a R×R dimensionless matrix, by:

Γr
r′(y) = βr �αr′ , r, r′ = 1, . . . R. (9)

Equation (8b)—the formula for τr(y, kr)—was obtained by
setting the diagonal elements of Γr

r′(y) to unity. Note that
in general Γr

r′(y) 6= 0 when r 6= r′, while Γr
r(y) = 1 is

always honored by definition.

IV. EXPLOITATION OF THE CSP DATA

The τr(y, kr) data is most interesting. If the r-th
reaction is the only reaction in a reaction system, then it
is easy to show that dΩr/dt = Ωr/τr. Thus |τr(y, kr)|,
with time as its physical dimension, is an intrinsic time
scale of the r-th reaction. The smaller |τr(y, kr)| is, the
faster is the intrinsic speed of the r-th reaction. Thus we
can, at any time t, order the R reactions in ascending order
of their |τr(y(t), kr)|’s so that r = 1 is intrinsically the
fastest reaction of them all at that time. Ordering reactions
this way is much easier (but less theoretically definitive)
than ordering by eigenvalues—which physical dimensions
are reciprocal time—of the Jacobian matrix ∂g/∂y [5].

Mathematically, the stiffness of (1) is caused by a large
gap in the values of the τr(y, kr)’s. Such gaps separate
the fast and slow reaction subspaces. When the ratio of
two successive values of τr(y, kr) is small, this ratio is a
credible estimate of the small parameter ε in g(y; ε).

For the sake of simplicity, we assume that the set of M
fast α1, . . . ,αM so identified are linearly independent, and
that all M fast τm(y, km)’s are negative. In addition, we
also assume that the total number of linearly dependent αr’s
is not very large. The fast subspace is then M -dimensional
(with M < N ) and stable. It is then intuitively obvious that
the chemically/physically meaningful αm(y)’s are excellent
choices for the am(y)’s:

am(y) = αm(y) +O(ε), m = 1, . . . ,M. (10a)

We next choose the bm’s to be some linear combinations
of the fast βm(y)’s:

bm(y) =
M∑

m′=1

Θm
m′(y)βm′

(y) +O(ε),m = 1, ...,M,

(10b)
where Θm

m”(y), a M ×M dimensionless matrix, is deter-
mined by imposing bm � am” = δm

m”:

Θm
m”(y) =

(
Γm”

m (y)
)−1

+O(ε),m,m” = 1, . . . ,M.
(10c)

Thus Qfast(M) is found. To validate the choices made in
(10b), we perform the so-called step #1 CSP refinement
procedure on the bm(y)’s as outlined by (6.17a,b) of [3].
Noting that dbm/dt+ bm � ∂g/∂y = ∂(bm � g)/∂y, we
rewrite the original iterative refinement formula as follows:

bm
o (y) =

M∑
m′=1

τm
m′

∂

∂y
(bm′

(y)�g), m = 1, . . . ,M, (11)

where τm
m′(y), a M×M matrix, is determined immediately

below. It is readily demonstrated that bm
o (y) = bm(y) +

O(ε). Using (10b) for bm(y) on the right-hand side of (11),
imposing bm

o � am′ = δm
m′ and taking advantage of (10c),

the leading order approximation for τm
m′(y) is found to be:

τm
m′(y) = Θm

m′(y)τm′(y, km′)+O(ε), m,m′ = 1, . . . ,M.
(12)

The M eigenvalues of τm
m′(y)—all are expected to be

O(τm) and negative—are credible approximations of the
time scales of the fast subspace in the small ε limit.

The wisdom of the intuitive am(y)’s choices made in
(10a) can be similarly validated using the step #2 iterative
CSP refinement procedure. See §6.5 of [3].

V. THE NET VALUE OF Ωm(y) IN THE SLOW EPOCH

After the fast reactions are exhausted, we know bm�g =
O(ε). Using (10b) for bm, this equation tells us that in the
slow epoch Ωm(y; km)− Ωm

∞(y) = O(ε), where:

Ωm
∞(y) ≡ −

M∑
m”=1

Θm
m”

R∑
r=M+1

Γm”
r Ωr(y; kr), (13)

m = 1, . . . ,M.

In other words, the forward and reverse reaction rates of
the fast reactions are not in balance in the slow epoch—
their net values are given approximately by (13). Note that
gslow(y; ε) in the slow epoch can also be derived/calculated
using the original (2)—instead of (5c)—provided the above
Ωm
∞(y)’s are used for all the needed Ωm(y; km)’s.

VI. CONCLUDING REMARKS

Subroutines for αr(y), βr(y), and τr(y, kr) should be
included for every reaction in chemical kinetics databases so
that—for any reaction system of interest—credible values
of M and ε can easily be found, and that system data such
as Γr

r′(y), Θm
m′(y), bm(y), Qfast(M), τm

m′(y), etc. can
be routinely computed when needed. Such CSP data can
provide informative answers to questions such as what roles
does the r-th reaction play at time t? How to deal with large
number of linearly dependent αr(y)’s will be discussed.
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