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Abstract— Finite-time Lyapunov analysis (FTLA) is used to
determine reduced-order manifold structures in the flow of
nonlinear dynamical systems exhibiting two-timescale behav-
ior. The approach is described and explained in the context of
a simple example.

I. INTRODUCTION

The purpose of the paper is to present a methodology
for diagnosing two-timescale nonlinear behavior and char-
acterizing the associated manifold structure, and to illus-
trate its use. The methodology is inspired by the intrinsic
low-dimensional manifold method (ILDM) [1], but instead
of using eigenvalues and eigenvectors, it uses finite-time
Lyapunov exponents and vectors. The methodology [2], [3]
derives from the asymptotic theory of partially hyperbolic
systems [4]. The use of Lyapunov exponents and vectors
has also been explored in [5].

II. FINITE-TIME LYAPUNOV ANALYSIS

The goal of our analysis is to diagnose two-timescale
behavior of nonlinear dynamical systems and to determine
points on the reduced-order slow manifold. The timescale
information is based on the finite-time Lyapunov exponents
and vectors (FTLE/Vs). Consider a nonlinear dynamical
system ẋ = f(x) with associated tangent linear dynamics
v̇ = Df(x)v where x(t) ∈ Rn and v(t) ∈ TxRn. Φ(t,x)
denotes the fundamental matrix of the linear dynamics for
initial conditions x(0) = x and Φ(0,x) = In. The forward
and backward FTLEs are given by

µ±(T,x,v) := (ln ‖Φ(±T,x)v‖)/T, (1)

for propagation time T > 0. The corresponding forward
and backward FTLVs, l±i (±T,x), i = 1, . . . , n, can be
computed by choosing the proper vectors from the singular
value decomposition of the transition matrix Φ(±T,x) [6],
[2]. The orthonormal FTLVs define the following subspaces,
for i = 1, . . . , n:

L+
i (T,x) := span{l+1 (T,x), . . . , l+i (T,x)},
L−i (T,x) := span{l−i (T,x). . . . , l−n (T,x)}, (2)

Definition [3]: A set X ⊂ Rn, n ≥ 2, is a uniform finite-
time two-timescale set for ẋ = f(x), with fast, slow and
convergence time constants (ν−1, σ−1 and ∆µ−1), if there
exist positive integers ns, nc, nu, with ns + nc + nu = n,
nc ≥ 1 and ns + nu > 0, a start time ts, a cut-off time tc,

and an available averaging time T with 0 ≤ ts < tc ≤ T
such that the following three properties are satisfied. We use
the notation T = (ts, T ] and Tc = (ts, tc].
1) There exist positive constants β > α > 0 such that,
uniformly on T ×X , the forward and backward Lyapunov
spectra are separated by gaps of size ∆µ = β − α into ns,
nc and nu dimensional subsets.
2) For each x ∈ X , there is a continuous splitting of the
tangent bundle

TxRn = Es(T ,x)⊕ Ec(T ,x)⊕ Eu(T ,x) where

Es = L+
ns , Ec = L+

ns+nc ∩ L−ns+1, Eu = L−ns+nc+1.
(3)

3) There exist ν > σ > 0 such that at each x ∈ X for all
t ∈ Tc

v ∈ Es(T ,x)⇒

{
‖Φ(−t,x)v‖ ≥ eνt‖v‖
‖Φ(t,x)v‖ ≤ e−νt‖v‖

v ∈ Ec(T ,x)⇒ e−σt‖v‖ ≤ ‖Φ(±t,x)v‖ ≤ eσt‖v‖

v ∈ Eu(T ,x)⇒

{
‖Φ(−t,x)v‖ ≤ e−νt‖v‖
‖Φ(t,x)v‖ ≥ eνt‖v‖

.

(4)
Provided that X is a uniform finite-time two-timescale

set, we can now look for a finite-time nc-dimensional slow
manifold S(T ) such that f(x) ∈ Ec(T ,x) for all x ∈ S(T ).
The set

{x ∈ X : 〈f(x),w〉 = 0,∀w ∈ (Ec(T ,x))⊥} (5)

thus satisfies a necessary condition for a finite-time slow
manifold.
Rather than using eigenvectors of Df(x) as in the ILDM
method [1], or direction information from a neighboring
manifold [7], we use the appropriate Lyapunov vectors to
form the basis for the orthogonal complement of Ec(T ,x)

(Ec(T,x))⊥ = span{l−1 (T,x), . . . , l−ns(T,x),

, l+ns+nc+1(T,x), . . . , l+n (T,x)}.
(6)

We assume that the manifold can locally be parametrized by
a subset of nc of the n system coordinates and represented
as a graph. The nc independent variables are chosen such
that their coordinate axes are not parallel to any directions
in (Ec)⊥ and the remaining n − nc are found by solving
the orthogonality conditions in (5).



A. Example - 4D Hamiltonian System

Consider the following Hamiltonian system which arises
from the first-order necessary conditions of an optimal
control problem

ẋ1 = x2,
ẋ2 = −

(
cx2 + k1x1 + k2x

3
1 + λ2/m

)
/m,

λ̇1 = λ2
(
k1 + 3k2x

2
1

)
/m,

λ̇2 = −λ1 + cλ2/m.

(7)

We consider (7) in the form ẋ = f(x) with x =
[x1 , x2 , λ1 , λ2]T ∈ R4 and f defined appropriately. For
small values of m, the system can be expected to evolve
on two disparate timescales. For the numerical results we
use m = 0.5 , k1 = 1 , k2 = 0.01 , and c = 4

√
k1m.

FTLA is applied in a region X , chosen such that the ILDM
method is applicable yet the slow manifold curvature is
large enough that the ILDM method produces noticeable
error. We present results for five points that are represen-
tative of all the points in X . Figure 1 shows the forward
and backward Lyapunov exponents for the five points as
functions of the averaging time T . With ns = nu = 1,
nc = 2, α = 0.5, β = 5.6, ∆µ = 5.1, σ = 0.7,
ν = 5.2, ts = 0 and tc = T = 0.5, the conditions, for a
uniform two-timescale set resolvable over 2.6 convergence
time constants, are satisfied.
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Fig. 1. Superposition of backward and forward FTLEs for points in X .
Note that only segments of the y-axis are shown to highlight the central
FTLEs.

Computing Slow Manifold Points Using FTLA: The slow
subspace Ec(T ,x) and its orthogonal complement have
dimension nc = n− nc = 2 and can be written as

Ec(T ,x) = L+
3 (T ,x) ∩ L−2 (T ,x)

(Ec(T ,x))⊥ = span{l−1 (T ,x), l+4 (T ,x)}. (8)

We use (x1, λ1) as the independent coordinates and com-
pute the (x2, λ2) coordinates for the graph of S(T ) by
solving the orthogonality conditions in (5). Because the
exact location of the slow manifold is not known, we use
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Fig. 2. Projection onto the λ1-x2 plane of the forward and backward
propagations from initial points on the slow manifold (circles).

the following consistency check to assess accuracy. The
estimated slow manifold points x̂j are propagated backward
and forward in time to φ(t±, x̂j). Then for each of the end
points, we fix the independent variables, x1 and λ1, and use
FTLA to recompute the dependent variables, x2 and λ2 for
the slow manifold point estimate. The degree of consistency
between the propagated estimates and re-estimated values
of the dependent variables is an indication of accuracy. The
same procedure is performed for the ILDM estimates.
Fig. 2, showing points and trajectories projected onto the
λ1-x2 plane, indicates that FTLA is more consistent than
the ILDM method. Although the initial ILDM points (red
circles) appear close to the initial FTLA points, the high
degree of inconsistency at the end points indicates greater
inaccuracy.

REFERENCES

[1] U. Maas and S. B. Pope, “Simplifying chemical kinetics: intrinsic
low-dimensional manifolds in composition space”, Combustion and
Flame 88 (1992) 239–264.

[2] K. D. Mease, S. Bharadwaj, and S. Iravanchy, “Timescale analysis for
nonlinear dynamical systems”, J. Guidance, Control and Dynamics
26 (2003) 318-330.

[3] K. D. Mease, U. Topcu, E. Aykutlug, M. Maggia, “Characteriz-
ing two-timescale nonlinear dynamics using finite-time Lyapunov
exponents and vectors, Characterizing Two-Timescale Nonlinear
Dynamics Using Finite-Time Lyapunov Exponents and Vectors”,
arXiv:0807.0239 [math.DS], 2012. [eprint]

[4] B. Hasselblatt and Y. B. Pesin, “Partially Hyperbolic Dynamical
Systems”, in B. Hasselblatt and A. Katok (Eds.), Handbook of
Dynamical Systems, Vol. 1B, Elsevier, New York, 2005.

[5] A. Adrover, F. Creta, M. Giona, M. Valorani and V. Vitacolonna,
“Natural tangent dynamics with recurrent biorthonormalizations: A
geometric computational approach to dynamical systems exhibiting
slow manifolds and periodic/chaotic limit sets”, Physica D 213(2)
(2006) 121 – 146.

[6] L. Dieci and E. S. Van Vleck, “Lyapunov spectral intervals: theory
and computation”, SIAM J. Numerical Analysis 40(2) (2002) 516–
542.

[7] B. Rasmussen and L. Dieci, “A geometrical method for the approxi-
mation of invariant tori”, J. Computational and Applied Mathematics
216 (2008) 388–412.


