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Abstract— Mechanism reduction techniques are used to 
develop a class of adaptive preconditioners for integrating the 
ordinary differential equations (ODE) associated with large 
chemical kinetic mechanisms.  The new adaptive precon-
ditioners reduce the computational cost by several orders of 
magnitude relative to traditional dense solution methods for a 
detailed 2-methylnonadecane mechanism (C20H42 with 7172 
species). 

 

I. INTRODUCTION  
Preconditioners are sought to increase the convergence 

rate of the iterative linear system solver embedded within 
the implicit ODE solver.  In particular, the linear system 
solver is used for every iteration of the Newton-Raphson 
nonlinear solver, which computes the chemical state at 
future timesteps in the implicit discretization of the ODEs 
[1].  A good preconditioning matrix for ODE solvers is one 
that captures the dominant behavior of the system 
evolution, but is significantly easier to solve than the 
complete system [2]. 

The Jacobian matrices associated with the ODEs of 
reduced mechanisms are thus ideal candidates for use as 
preconditioners.  A preconditioner need only serve as an 
approximation to the true ODE system, which is then 
improved by the iterative linear and non-linear solvers to 
achieve the same solution as direct methods (to within a 
user-specified accuracy).  This means that the reduced 
mechanism selected for the preconditioner can be smaller 
and lower in fidelity than the standard approach to global 
mechanism reduction.  Further, the reduced mechanism 
must only be accurate for the chemical state over the 
duration of an individual timestep, which means even 
greater reduction is possible by allowing the 
preconditioning mechanism to adapt.  This feature, referred 
to as adaptive preconditioning, allows the integration of 
detailed chemical kinetic mechanisms to occur at a cost 
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comparable to methods using on-the-fly mechanism 
reduction without any loss of accuracy. 

 

II. APPROACH 
A number of adaptive preconditioners are tested using 

several different reduction heuristics.  The simplest reduc-
tion technique is based on removing reactions that have a 
slow characteristic timescale relative to the integrator 
timestep.  To filter out the slow reactions in the 
preconditioner matrix P, a threshold operation is applied to 
the Jacobian matrix B of the backward differentiation 
formulas (BDF) for the stiff ODE integrator.  Specifically,  

 Pij =
Bij
0

if i = j  or |Bij | > η  

otherwise,
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where η is a nondimensional, user-specified threshold.  A 
more complete description of the approach to reducing the 
mechanism in this preconditioner is found in [3].  

Other preconditioners are also tested as part of this 
investigation, but none have been found so far to produce a 
measurably faster method than the simple reaction filtering 
approach in (1). As a consequence, the computational 
timings for these other preconditioners are not discussed in 
detail. The filter metrics for these other preconditioners 
include: (i) the species coupling frequency normalized by 
the destruction rate (i.e., row-normalization); (ii) the 
species coupling frequency normalized by the perturbation 
species destruction rate (i.e., column normalization); (iii) 
the maximum and minimum of metrics (i) and (ii); and (iv) 
the species coupling metric used in the technique in [4] for 
mechanism reduction via directed relational graph with 
error propagation (DRG-EP) analysis. It is interesting to 
note that filtering by the DRG-EP metric offers large 
reductions in the preconditioner size near equilibrium. 
However, the performance is not consistent over the range 
of conditions tested due to convergence problems. Further 
investigation is necessary to apply this more sophisticated 
preconditioner in a manner that is able to systematically 
avoid the non-linear convergence errors currently observed. 



 

Fig. 1. Comparison of the computational cost between the new adaptive 
preconditioner approach (blue solid circles) and the traditional ODE solver 
using dense matrix methods (red empty squares). 

III. TEST CASES 
The average computation times are compared between 

two approaches for integrating a constant volume, 
homogenous reactor model.  The first approach is based on 
the traditional stiff-ODE solver methods first used in 
chemical kinetics.  This approach is still found in some 
multi-dimensional computational fluid dynamics codes (e.g. 
KIVA-MZ [5]).  The second approach is based on the 
adaptive preconditioner (1) using the optimized integrator 
and sparse matrix settings developed in [6]. 

A total of ten different mechanisms are tested ranging in 
size from hydrogen (10 species [7]) to 2-methylnonadecane 
(7172 species [8]).  The initial compositions are a stoich-
iometric mixture of fuel and idealized air (79% N2 and 21% 
O2) at an initial pressure of 20 atmospheres.  Between eight 
and twenty-five initial temperatures are tested ranging from 
650 to 1450 Kelvin for each mechanism.  The evolution of 
each mixture composition is simulated for one second of 
physical time, and only those initial conditions leading to 
auto-ignition are included in the average computation time 
reported.  A more complete description of the test cases is 
found in [3] along with a full reference list and optimum 
threshold values η found for each mechanism. 

 

IV. RESULTS 
   The average computation time is obtained for each 

approach using a single thread of an Intel Xeon E5620 
processor (2.4 GHz clock speed with 1.33 GHz DDR3 ECC 
RAM). The timing results are shown in Fig. 1.  For the 
largest mechanism tested (2-methylnonadecane, 7172 
species), the adaptive preconditioner has an average 
solution time of 32 seconds compared to 105 seconds (more  

than one day) for the traditional approach, which represents 
three orders of magnitude of computational speedup. It is 
important to stress that while the mechanism is effectively 
reduced at each timestep by the filtering operation for the 
preconditioner (1), the mechanism governing the ODE 
system is unchanged. Consequently, the ignition delay 
times, temperatures and major species mass fractions 
(greater than 10-6) obtained through the two approaches 
agree to a minimum of six decimal places for the user-
specified relative tolerance of 10−8.  The mass fractions of 
trace species (between 10−12 and 10−6) are found to agree to 
within four decimal places. The computational speedup 
shown in Fig. 1 therefore occurs with no practical loss in 
accuracy. 

For the smaller mechanisms, hydrogen (10 species) and 
methane (53 species) the Jacobian matrix is sufficiently 
dense that the adaptive preconditioner is comparable to the 
traditional approach. In fact, for the hydrogen mechanism 
the dense approach is approximately two times faster. To 
avoid this penalty, a metastrategy can be developed that 
combines the two approaches and automatically selects the 
best method based on mechanism size or through automatic 
tuning when the mechanism information is first read into 
the simulation. 
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