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02:30 Break
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03:30 Fast Solver Techniques for Algebraic Equations Resulting from the Quasi Steady State

Approximation — F. Mauss
04:00 Adjourn
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Model Reductions with Special CSP Data
S. H. Lam∗

∗Princeton University, MAE Department, Princeton, N.J. 08544, U.S.A.

Abstract— Certain reaction-specific CSP data are shown to
be especially useful for model reductions.

I. STATEMENT OF THE PROBLEM

Consider the following general initial-value problem:

dy
dt

= g(y; ε), y(t = 0) = ỹ, (1)

where both y and g are N -dimensional column vectors,
the components of g(y; ε) are given algebraic functions of
y, and ε is a small dimensionless parameter. The y initial
value is denoted by ỹ and is arbitrary. We are interested
in the small ε case when (1) is known to be stiff. We shall
show that for general chemical kinetics problems certain
reaction-specific data are most useful for doing CSP model
reductions, yielding results that are very easy to interpret.

For chemical kinetics problems, g(y; ε) is usually given
in the following form:

g(y; ε) =
R∑

r=1

αrΩr(y; kr), (2)

where the αr’s are N -dimensional column vectors, and R
is the total number of chemical reactions in the reaction
system. The physical dimensions of the elements of αr

are the same as that of the corresponding elements of y,
while the physical dimensions of all the Ωr(y; kr)’s are
reciprocal time. For each of the r-th reaction, the elements
of αr are proportional to the stoichiometric coefficients,
Ωr(y; kr) is the net reaction rate, and kr is the kinetic rate
parameter. Usually, Ωr(y; kr) is proportional to kr and its
y dependence is nonlinear. For most real world problems,
the αr’s dependence on y, if any, is weak, and R is often
much bigger than N—so many αr’s are linearly dependent.
Equation (1) is stiff when M > 0 reactions are much
faster than all others. The stiffness of (1) is symbolically
represented by the dimensionless parameter ε in g(y; ε).
In the present paper, we exploit the fact that both αr and
Ωr(y; kr) are reaction-specific entities which are chemi-
cally/physically meaningful to knowledgeable investigators.

II. THE CSP SIMPLIFIED REDUCED MODEL

When there are M linearly independent fast reactions,
CSP [1], [2], [3], [4] introduces a dimensionless N × N
fast subspace projection matrix Qfast(M) as follows:

Qfast(M) ≡
M∑

m=1

ambm, (3)

where the am’s and the bm’s are M pairs of the fast
subspace’s column and row basis vectors which are linearly
independent and have been CSP-refined at least once. They
are—by definition—orthonormal to each other:

bm � am′ = δm
m′ , m,m′ = 1, . . . ,M, (4)

where � denotes the inner product operator and δm
m′ denotes

the Kronecker Delta.
CSP provides iterative refinement procedures to find good

quality am’s and bm’s. The right-hand side of (1) is
partitioned using a good quality Qfast(M):

g(y; ε) = gfast(y; ε) + gslow(y; ε), (5a)
gfast(y; ε) ≡ Qfast(M)� g(y; ε), (5b)
gslow(y; ε) ≡ (I − Qfast(M))� g(y; ε), (5c)

and I is the identify matrix. CSP shows that gfast(y; ε)
is dominant only during the initial fast transient. After the
fast transient is exhausted (assuming the system is stable),
gfast(y; ε) is O(ε) in comparison to gslow(y; ε). The CSP-
derived simplified reduced model and initial condition for
the original given problem in the slow epoch are then:

dy
dt

= gslow(y; ε) +O(ε), (6)

gfast(ỹslow; ε) = O(ε), ỹslow ≡ y(t = O(ε)).

Any solution y(t) of the above non-stiff initial-value prob-
lem is guaranteed by CSP to automatically stay inside the
slow subspace defined by:

gfast(y(t); ε) = O(ε), t > O(ε). (7)

The quality of the CSP-derived simplified reduced model—
as measured by the smallness of the O(ε) terms above—
depends on the quality of the am’s and bm’s in Qfast(M).

III. REACTION-SPECIFIC CSP DATA

Equation (2) clearly associates the column vector αr with
the r-th reaction. We now associate the following row vector
βr with the r-th reaction:

βr ≡ τr
∂Ωr(y; kr)

∂y
= βr(y), r = 1, . . . , R, (8a)

where τr, a most interesting reaction-specific entity with
time as its physical dimension, is defined by:

τr ≡
1

∂Ωr

∂y �αr

= τr(y, kr), r = 1, . . . , R. (8b)



We next define Γr
r′(y), a R×R dimensionless matrix, by:

Γr
r′(y) = βr �αr′ , r, r′ = 1, . . . R. (9)

Equation (8b)—the formula for τr(y, kr)—was obtained by
setting the diagonal elements of Γr

r′(y) to unity. Note that
in general Γr

r′(y) 6= 0 when r 6= r′, while Γr
r(y) = 1 is

always honored by definition.

IV. EXPLOITATION OF THE CSP DATA

The τr(y, kr) data is most interesting. If the r-th
reaction is the only reaction in a reaction system, then it
is easy to show that dΩr/dt = Ωr/τr. Thus |τr(y, kr)|,
with time as its physical dimension, is an intrinsic time
scale of the r-th reaction. The smaller |τr(y, kr)| is, the
faster is the intrinsic speed of the r-th reaction. Thus we
can, at any time t, order the R reactions in ascending order
of their |τr(y(t), kr)|’s so that r = 1 is intrinsically the
fastest reaction of them all at that time. Ordering reactions
this way is much easier (but less theoretically definitive)
than ordering by eigenvalues—which physical dimensions
are reciprocal time—of the Jacobian matrix ∂g/∂y [5].

Mathematically, the stiffness of (1) is caused by a large
gap in the values of the τr(y, kr)’s. Such gaps separate
the fast and slow reaction subspaces. When the ratio of
two successive values of τr(y, kr) is small, this ratio is a
credible estimate of the small parameter ε in g(y; ε).

For the sake of simplicity, we assume that the set of M
fast α1, . . . ,αM so identified are linearly independent, and
that all M fast τm(y, km)’s are negative. In addition, we
also assume that the total number of linearly dependent αr’s
is not very large. The fast subspace is then M -dimensional
(with M < N ) and stable. It is then intuitively obvious that
the chemically/physically meaningful αm(y)’s are excellent
choices for the am(y)’s:

am(y) = αm(y) +O(ε), m = 1, . . . ,M. (10a)

We next choose the bm’s to be some linear combinations
of the fast βm(y)’s:

bm(y) =
M∑

m′=1

Θm
m′(y)βm′

(y) +O(ε),m = 1, ...,M,

(10b)
where Θm

m”(y), a M ×M dimensionless matrix, is deter-
mined by imposing bm � am” = δm

m”:

Θm
m”(y) =

(
Γm”

m (y)
)−1

+O(ε),m,m” = 1, . . . ,M.
(10c)

Thus Qfast(M) is found. To validate the choices made in
(10b), we perform the so-called step #1 CSP refinement
procedure on the bm(y)’s as outlined by (6.17a,b) of [3].
Noting that dbm/dt+ bm � ∂g/∂y = ∂(bm � g)/∂y, we
rewrite the original iterative refinement formula as follows:

bm
o (y) =

M∑
m′=1

τm
m′

∂

∂y
(bm′

(y)�g), m = 1, . . . ,M, (11)

where τm
m′(y), a M×M matrix, is determined immediately

below. It is readily demonstrated that bm
o (y) = bm(y) +

O(ε). Using (10b) for bm(y) on the right-hand side of (11),
imposing bm

o � am′ = δm
m′ and taking advantage of (10c),

the leading order approximation for τm
m′(y) is found to be:

τm
m′(y) = Θm

m′(y)τm′(y, km′)+O(ε), m,m′ = 1, . . . ,M.
(12)

The M eigenvalues of τm
m′(y)—all are expected to be

O(τm) and negative—are credible approximations of the
time scales of the fast subspace in the small ε limit.

The wisdom of the intuitive am(y)’s choices made in
(10a) can be similarly validated using the step #2 iterative
CSP refinement procedure. See §6.5 of [3].

V. THE NET VALUE OF Ωm(y) IN THE SLOW EPOCH

After the fast reactions are exhausted, we know bm�g =
O(ε). Using (10b) for bm, this equation tells us that in the
slow epoch Ωm(y; km)− Ωm

∞(y) = O(ε), where:

Ωm
∞(y) ≡ −

M∑
m”=1

Θm
m”

R∑
r=M+1

Γm”
r Ωr(y; kr), (13)

m = 1, . . . ,M.

In other words, the forward and reverse reaction rates of
the fast reactions are not in balance in the slow epoch—
their net values are given approximately by (13). Note that
gslow(y; ε) in the slow epoch can also be derived/calculated
using the original (2)—instead of (5c)—provided the above
Ωm
∞(y)’s are used for all the needed Ωm(y; km)’s.

VI. CONCLUDING REMARKS

Subroutines for αr(y), βr(y), and τr(y, kr) should be
included for every reaction in chemical kinetics databases so
that—for any reaction system of interest—credible values
of M and ε can easily be found, and that system data such
as Γr

r′(y), Θm
m′(y), bm(y), Qfast(M), τm

m′(y), etc. can
be routinely computed when needed. Such CSP data can
provide informative answers to questions such as what roles
does the r-th reaction play at time t? How to deal with large
number of linearly dependent αr(y)’s will be discussed.
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Low-Dimensional Manifolds in Direct Numerical
Simulations of Autoigniting Mixing Layers

Jeroen van Oijen, Ugur Göktolga, Philip de Goey
Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract— Direct numerical simulation of autoigniting mix-
ing layers are performed to investigate the turbulence chem-
istry interaction in jet-in-hot-coflow flames. The results of
these simulations with a skeletal reaction model are analyzed
in composition space. The ignition process appears to follow
a low-dimensional manifold that can be parameterized by
mixture fraction and a reaction progress variable.

I. INTRODUCTION

The focus of this research is on new combustion concepts,
which produce energy from current and future fuels, with
substantially enhanced efficiency and significantly reduced
pollutant emissions. Going by names such as high efficiency
combustion and flameless oxidation, these new methods
allow the use of recuperated heat in high-temperature pro-
cesses without the penalty of increased NOx emissions,
and offer the possibility of substantially homogenizing the
temperature field in combustion devices (see, e.g., [1, 2]).
In these combustion systems a high degree of preheating
of the reactants is coupled with a high degree of dilution.
Following [2], we use the term MILD combustion to refer
to these systems.

In MILD systems, combustion takes place in the midst
of turbulent mixing of the reactants. Since the temperature
of the reactants is above that of autoignition, a complex
interplay between turbulent mixing, molecular transport and
chemical kinetics occurs. In order to reveal the fundamental
reaction structures of MILD combustion, high-fidelity nu-
merical simulations are needed in which all scales of turbu-
lent motion are resolved. Combined with detailed chemical
reaction models, direct numerical simulation (DNS) is the
appropriate tool to investigate these phenomena. The draw-
back of DNS, conversely, is that it is extremely expensive
from a computational point of view.

In the present study, the process of a cold methane-
hydrogen fuel jet issuing in a hot diluted coflow and
the subsequent ignition process is modeled by DNS of
autoigniting mixing layers using detailed chemistry and
transport models. The conditions are taken to match the
experiments of Dally et al. [3] as close as possible. The in-
teraction between the ignition chemistry and the developing
mixing layer is investigated by analyzing 2D DNS results
in composition space. It is investigated whether the ignition
process proceeds along a lower-dimensional manifold in

composition space, which could be the basis of a reduced
chemistry model.

II. DNS OF AUTOIGNITING MIXING LAYERS

Igniting temporally evolving mixing layers have been
modeled by using DNS. The employed DNS code solves
the governing equations in fully compressible form in
terms of density ρ, velocity u, species mass fractions Yα,
and temperature T . The viscosity and conductivity of the
mixture are fitted as functions of temperature. The diffusion
of species is modeled by using a constant Lewis number
approach. The Lewis numbers were determined by fitting
the expressions to results of 1D simulations with more
detailed transport models. The chemical source terms are
computed by using the DRM19 reaction mechanism, which
is a reduced reaction set derived from the GRI mechanism
and contains 21 species and 84 reversible reactions [4].

The DNS consists of a temporally evolving, non-
premixed, 2D planar jet flame. A layer of fuel in the
domain center is surrounded by counterflowing oxidizer. In
the streamwise (x) direction, periodic boundary conditions
are applied, while in the cross-stream (y) direction, non-
reflecting outlet boundaries are used assuming atmospheric
pressure at infinity. The fuel is a mixture of methane
and hydrogen, equal in volume. The oxidizer consists of
air diluted with combustion products and nitrogen. The
temperature of the oxidizer is 1300 K. The compositions of
the fuel and the oxidizer are chosen to match the conditions
of experiment HM1 in Ref. [3]. The stoichiometric mixture
fraction for these streams is Zst = 6.7×10−3. The fuel core
width, W , is 2 mm, and the difference in the velocity of the
streams, ∆U , is 67 m/s. Together with the viscosity ν of
the fuel stream, this leads to a Reynolds number of 3850,
which is in the range of the experiments by Dally et al. [3].
A more detailed description of the code and the simulation
setup can be found in Refs. [5, 6].

The DNS results of the two-dimensional turbulent mixing
layer are presented in Fig. 1. The evolution of YH2 and
YH is shown. The contour plots of H2 show the growth
of the shear layer instability. This instability forms vortical
structures which interact and merge. Due to the very small
values of Zst, the stoichiometric isocontours lie at the
outside of the mixing layer and appear to enclose the



Fig. 1. Mass fraction of H2 (left) and H (middle) and T (right) at
t = 0.2, 0.3, 0.4 ms (top to bottom). The gray scale varies from 0 to
0.111 and from 0 to 4.6 × 10−4 for H2 and H, respectively. The red
dashed lines represent the stoichiometric mixture fraction Z = Zst.

turbulent region. As a result, the reaction layers in these
flames are only mildly influenced by turbulence.

III. LOW-DIMENSIONAL MANIFOLDS

In order to investigate whether the ignition chemistry
takes place in a lower-dimensional manifold, the DNS
results are analyzed in composition space. Since we are
dealing with a non-premixed system, the mixture fraction Z
is the principal controlling variable to describe the chemical
state. A second parameter is needed to describe the reaction
progress. The question is whether this 2D parametrization
with the mixture fraction Z and a reaction progress variable
Y is enough to describe the chemical state in this system
with a reasonable accuracy, or whether additional dimen-
sions are needed.

In Fig. 2, the mass fraction of OH is plotted as a
function of the progress variable Y conditioned at Z = Zst.
The progress variable is a normalized linear combination
of reaction products. Since we are mainly interested in
the ignition chemistry, logarithmic scales are used in the
plot. The scatter from the DNS appears to collaps on a
single curve. This indicates that there is a strong correlation
between OH and the progress variable and that YOH =
f(Z,Y) apart from some small deviations. These small
deviations can be explained by variations in the scalar
dissipation rate along the stoichiometric isocontour. The
blue and red curves in Fig. 2 represent the correlations in
a homogeneous ignition simulation and in a 1D laminar
igniting mixing layer, respectively. In the homogeneous
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Fig. 2. Mass fraction of OH as a function of the progress variable
conditioned at Z = Zst. The scatter corresponds to the DNS results at
t = 0.24, 0.26, 0.28, 0.30, 0.40 ms from dark to light gray. The red curve
corresponds to a 1D laminar igniting mixing layer, and the blue curve
corresponds to a homogeneous ignition simulation.

simulation, the scalar dissipation rate is zero, while in the
laminar mixing layer it is comparable to that of the DNS
(see [6]). In the absence of gradients the OH mass fraction
is slightly higher, but the states in the 1D mixing layer agree
very well with the DNS results.

When ignition has occurred and a flame has been formed
(t > 0.3 ms), the correlation between OH and the progress
variable becomes much weaker. In this phase of the com-
bustion process a third dimension seems inevitable, but
the ignition chemistry follows a 2D manifold that can be
parameterized by mixture fraction and a progress variable.
Due to the limited interaction of the turbulence with the
reaction layers for the conditions of the flames studied here,
this conclusion may not hold for other conditions with much
stronger turbulence chemistry interaction. The following
steps in this research include the use of this manifold in
the DNS and a validation against the detailed results.
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Abstract—A detailed chemical kinetic mechanism has been 
developed to describe the oxidation of propene over a wide 
range of experimental conditions in experimental devices 
including a flow reactor, shock tubes, jet-stirred reactors and 
in flame studies. The mechanism contains uncertainties in the 
choice of critical rate constants for certain key reactions, 
which are discussed, particularly at high pressure. 

I. INTRODUCTION 
Propene is a key intermediate in the combustion of higher 

alkanes, and thus understanding the kinetics of propene is 
vitally important in the hierarchical development of the 
kinetic mechanisms. Propene oxidation can also contribute 
to soot production (and other pollutant formation). Therefore 
strategies for mitigating pollutant formation in advanced 
combustion systems depend on a complete understanding of 
the oxidation of alkenes such as propene.  

Several studies have investigated propene pyrolysis and 
oxidation at high temperatures experimentally. Burcat and 
Radhakrishan [1] and Qin et al. [2] separately used a shock 
tube to measure ignition delay times for propene oxidation 
in shock tubes over a temperature range of 1270–1840 K 
and at post-shock pressures in the range of 0.95–7.04 atm. 
Hidaka et al. [3] studied the thermal decomposition of 
propene behind reflected shocks with a temperature range of 
1200–1800 K and measured the product distribution. 

Davis et al. [4] studied the pyrolysis and oxidation of 
propene in a flow reactor at atmospheric pressure and at 
temperatures of 1181–1210 K and also measured laminar 
flame speeds of propene/air mixtures. Other flame speed 
studies include the study of Jomaas et al. [5] at pressures of 
1, 2 and 5 atm. Saaed and Stone [6] studied burning 
velocities of propene-air mixtures at varying temperatures 
(293 and 425 K) and pressures (0.5, 1.0, 2.0 and 3.5 bar). 

 There are several speciation studies in a jet-stirred reactor 
(JSR) by Dagaut and co-workers [7–9]. The most recent 
work by Le Cong et al. [9] investigated the oxidation of pure 
propene and its oxidation in the presence of CO2 and H2O at 
atmospheric pressure over a temperature range of 950–1450 
K. The older studies [7], [8] investigated propene oxidation 
as a function of residence time over the temperature range 
900–1200 K in the pressures range of 1–8 atm. 

A. Model 
AramcoMech1.4 contains 315 species and 1804 reactions. 

It is based on a previously published mechanism which 
described the oxidation of C1–C2 hydrocarbon and 
oxygenated hydrocarbon species [10]. A brute force 
sensitivity analysis was carried out to identify the important 

reactions for propene oxidation, described below. The 
recommended rate constants for the important reactions are 
discussed in the text were carried out using CHEMKIN 
PRO. 

B. Sensitivity analysis  
In order to highlight the important chemistry involved in 

propene oxidation a 'brute force' sensitivity analysis was 
performed Fig. 1. The sensitivity coefficient (σ) is defined 
as: σ = log(τ'/ τ") / (log 2.0/0.5) where τ' the ignition delay 
time calculated with a factor of two increase in k, and τ" is 
the ignition delay time calculated with a factor of two 
decrease in k. A negative σ indicates an overall promoting 
effect on reactivity, and vice versa. 

 

Fig. 1. Brute force sensitivity analysis of C3H6/air shock tube ignition 
delay time, φ = 1.0, p = 1atm, T = 1250 K. 

C. Rate consant discussion 
C3H6 +OHProducts: Fig. 1 shows that the system is 

sensitive to the branching ratio of the three radicals formed; 
the production of the resonantly stabilized allyl (3-propenyl) 
radical inhibits reactivity while the other two channels 
producing 2-propenyl (C3H5-t) and 1-propenyl (C3H5-s) 
respectively, lead to an increase in reactivity. We have 
adopted a rate constant from Vasu et al. [11], where the total 
rate constant was measured in a shock tube but it was not 
possible to distinguish the three product channels. However, 
this measurement was in excellent agreement with an ab-
initio study by Zádor et al. [12]. Thus, we utilize the rates 
recommended by Zádor et al. Fig. 2 shows the difference is 
branching ratio from the old to the current mechanism. A 
relatively small change in branching ratio (Fig. 2) has a 
significant effect on model prediction of JSR data (Fig. 3).  



 

Fig. 2 Branching ratio for the reaction C3H6+OH as recommended in a 
previous version of the mechanism [10] - - - and Zádor et al.[12] –––– 

C3H5-a+HO2Products: The sensitivity analysis 
emphasizes the importance of the ally radical and 
hydroperoxyl system. Goldsmith et al. [13] theoretically 
investigated the kinetics of the allyl + HO2 reaction, the 
thermal decomposition of C3H5OOH, and the uni-molecular 
reactions of C3H5O, and we use these calculated values. 

C3H5-a+O2Products: This system has been adopted 
from the study of Bozzelli and Dean [14]. These reactions 
promote reactivity as they convert the stable allyl radical to 
more reactive hydroxyl, vinoxy and hydroperoxyl radicals. 
We believe these reactions require further investigation.  

C3H6 +O2Products: The reaction of propene with 
molecular oxygen to give allyl and a hydroperoxyl radical is 
a very sensitive one, Fig 1. The rate constants for all three 
channels adopted in this work are estimated values. The 
activation energies are based on the heat of reaction while 
the pre-exponential factors are estimated. There appears to 
be a high level of uncertainty associated with this rate 
constant especially at higher temperatures. The dotted line in 
Fig. 3 highlights the effect the Baulch et al. [15] 
recommendation for propene has on the model prediction on 
propene oxidation in a JSR. 

 

Fig. 3. Propene species profile from a JSR. ––– current mechanism, 
- - - current mechanism plus C3H6+O2 description from Baulch et al.,  
. . . current mechanism plus original branching fraction for C3H6 +OH. 

D. Summary 
Despite being the subject of several studies [1–9, 11–14] 
the oxidation of propene is still not well understood 
especially at higher pressures. There is scope for further 
studies into the uncertainties associated with some of the 
important rate constants; for example the abstraction 
reaction of propene with molecular oxygen and the relative 
branching ratios for hydrogen atom abstraction from 
propene by the hydroxyl radical. 
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Abstract— It is demonstrated that a common technique in
reaction dynamics for construction of Slow Invariant Mani-
folds, connection of equilibria by heteroclinic orbits, can fail.
While the method is guaranteed to generate an invariant
manifold, the local dynamics far from equilibrium may be
such that nearby trajectories are in fact carried away from the
identified invariant manifold, thus rendering it to be of lim ited
utility in capturing slow dynamics far from equilibrium. An
eigenvalue-based method is described to characterize the local
behavior of such invariant manifolds.

I. I NTRODUCTION

Spatially homogeneous chemical reactions are described
by dynamical systems of the form

dz

dt
= f(z), z(0) = zo, z, zo, f ∈ R

N . (1)

Here, z is a vector of lengthN containing the species
concentrations, assuming that linear constraints representing
element conservation have been removed,t is time, andf
is a non-linear function ofz representing the law of mass
action with Arrhenius kinetics.

We take a Slow Invariant Manifold (SIM) to be an invari-
ant manifold (IM) on which slow dynamics are confined and
to which nearby trajectories are attracted. The identifica-
tion of one-dimensional SIMs by constructing heteroclinic
orbits connecting equilibria has gained attention since its
introduction [1] and extension by others,e.g. [2], [3], [4].
The essence of the fundamental hypothesis is illustrated in
Fig. 1. That hypothesis is that SIMs may be constructed
by 1) identifying equilibria of Eq. (1),i.e. pointsz where
f(z) = 0, and 2) connecting by trajectories from appropriate

SIM

Saddle

Sink

Fig. 1. Sketch of SIM envisioned as the invariant manifold connecting
equilibria.

IM

Saddle

Sink

Fig. 2. Sketch of failure of the method of heteroclinic orbitconstruction
for SIM identifcation.

non-physical saddle equilibria (those with at most one
positive eigenvalue) to the unique physical equilibrium,
which is a sink. Near the equilibria, the IM is guaranteed to
be attractive; moreover, for many reactive systems the IM
appears to be attractive in regions far from equilibrium.

However, nothing in the SIM construction algorithm pre-
cludes the scenario sketched in Fig. 2. Certainly, equilibria
can be identified and connected via heteroclinic orbits to
construct a canonical IM. But for a genericf(z), one has
no guarantee that trajectories near the canonical IM are in
fact attracted to it. In this study, we summarize analyses and
an example given by Mengers [5] for attractiveness criteria
for an IM; additional background is to be found in [6].

II. SUMMARY OF ANALYSIS

With the local JacobianJ = ∂f/∂z, defined throughout
the entire phase space, one can analyzeJ in the neigh-
borhood of any IM, such as an IM connecting equilibria.
At the physical equilibrium, all of the eigenvalues ofJ are
guaranteed to be negative and real, and all nearby points
will be drawn to the physical equilibrium. Away from the
physical equilibrium, it is possible for some eigenvalues to
be positive, and this can lead to certain trajectories being
drawn away from an IM. It is well known that tr(J) is
proportional to the rate of change of a local volume in
phase space. However, even if tr(J) < 0, the existence of
a positive eigenvalue can induce a local repulsion of an
individual trajectory from an IM.

It is possible [2], [5] to identify a unit tangent vector
to the IM, αt, and a set of unit normal vectors,αni, i =
1, . . . , N − 1. These vectors can be used to identify the



tangential and normal stretching rates,σt andσni:

σt = α
T
t · Js ·αt, σni = α

T
ni · Js ·αni, i = 1, . . . , N − 1.

(2)
Here Js = (J + JT )/2, the symmetric part ofJ. Along
the IM, αt is uniquely defined, up to its sign. However,
there are an infinite set ofαni when N > 2. Certainly if
all possibleσni < 0 and mini|σni| ≫ |σt|, the IM will be a
SIM; however, it is easy to construct cases for which these
criteria are not met.

One can pose the following optimization problem to
identify the maximumσn and its associatedαn. First, we
can recastJs = Q · Λ · QT , whereQ is a rotation matrix
with normalized eigenvectors ofJs in its columns, andΛ is
a diagonal matrix with the eigenvalues ofJs on its diagonal.
Then we seekαn to maximize

σn = (QT · αn)T ·Λ · (QT · αn), (3)

subject to

α
T
n · αn = 1, α

T
n · αt = 0. (4)

BecauseQ andαn both have unit norms, it is obvious that
|σn| ≤ |λmax|, where|λmax| is the magnitude of the largest
eigenvalue ofJs.

III. E XAMPLE

Consider the system, of the form of Eq. (1), withN = 3:

dz1

dt
=

1

20
(1 − z2

1
), (5a)

dz2

dt
= −2z2 −

35

16
z3 + 2(1 − z2

1
)z3, (5b)

dz3

dt
= z2 + z3. (5c)

This system has two finite roots,R1 at z = (−1, 0, 0)T and
R2 atz = (1, 0, 0)T . The JacobianJ has eigenvalues ofλ =
{1/10,−1/4,−3/4} at R1 andλ = {−1/10,−1/4,−3/4}
atR2. Thus,R1 is a saddle with one unstable mode, andR2

is a sink, analogous to a physical equilibrium in a reactive
system. There is a canonical IM defined by the heteroclinic
orbit that connectsR1 to R2 along thez2 = z3 = 0 axis;
however, we find this branch does not attract neighboring
trajectories along the entire IM, as is obvious by inspecting
Fig. 3, which shows a projection of the IM and nearby
trajectories in the(z1, z3) plane. The unit tangent to the
canonical IM is αt = (1, 0, 0)T , yielding a tangential
stretching rate ofσt = −z1/10. On the canonical IM,
we thus find thatσt ∼ 1/10 near R1 and σt ∼ −1/10
near the physical equilibriumR2. There exist points all
along the canonical IM withσn > 0. For example, atz =
(0, 0, 0)T , the maximum normal stretching rate isσn,max =
−1/2+

√
2473/32 = 1.05 for αn = (0,−0.132,−0.991)T .

Near the physical equilibrium atz = (1, 0, 0)T , one still
finds σn,max = −1/2 +

√
2665/32 = 1.11 for αn =
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Fig. 3. Projection of the IM connecting equilibria along with nearby
trajectories illustrating the non-attractive regions of the IM.

(0,−0.187, 0.982)T , but the real negative eigenvalues ofJ

itself render all trajectories to be attracted to the equilibrium.
It is likely that non-normality effects [7] need to be further
analyzed to better explain the behavior.

IV. CONCLUSION

Construction of invariant manifolds via connection of
equilibria by heteroclinic orbits offers no guarantee thatone
has found a slow invariant manifold.
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Abstract— Motivated by the need for dynamical analysis
and model reduction in stiff stochastic chemical systems, we
focus on the development of methodologies for analysis of
the dynamical structure of singularly-perturbed stochastic
dynamical systems. We outline a formulation based on random
dynamical systems theory. We demonstrate the analysis for a
model two-dimensional stochastic dynamical system built on
an underlying deterministic system with a tailored fast-slow
structure, and an analytically known slow manifold, employing
multiplicative brownian motion noise forcing.

I. INTRODUCTION

At a fundamental level, chemical reactions are the result
of molecular collisions. Given the random nature of these
collisions, the progress of chemical processes at the smallest
scales is stochastic, and is adequately described by the
Chemical Master Equation (CME) [9]. In a computational
setting, the CME can be simulated directly only for sys-
tems involving a sufficiently small number of species, and
molecule counts. Alternately, the Stochastic Simulation Al-
gorithm (SSA) [6,8] can be used to simulate a jump Markov
process, involving integer-valued species molecule counts,
with resulting trajectories whose statistics accurately model
the CME solution. These stochastic effects are averaged out
when system size and molecule counts are at the contin-
uum scale, resulting in the familiar deterministic Ordinary
Differential Equation (ODE) system models for chemical
systems. An intermediate, mesoscale, regime exists, when
molecule counts are large, e.g. O(103), but not sufficiently
so to make the continuum approximation viable. In this
regime, the Fokker-Planck equation can be used to simulate
the evolution of the probability density function (PDF) of
states, or the Chemical Langevin Equation (CLE) [5] can
be used to simulate state trajectories [7]. This regime is
frequently encountered in models of reaction processes in
biological systems, as well as in models of catalytic reaction
processes in the vcinity of micro/nano-scale features at gas-
solid interfaces.

The mesoscale regime, and particularly the CLE, is the
focus of this work. More specifically, we are interested
in developing methods for dynamical analysis and model
reduction in stiff stochastic chemical systems governed by
the CLE. From a dynamical perspective, these systems, as
is true for chemical models at all scales, can exhibit a

significant degree of stiffness, resulting from the large range
of time-scales of the modeled reaction processes [3]. More-
over, the underlying chemical kinetic models can be quite
large, involving large numbers of species and reactions.
Accordingly, there is a strong need for understanding the
dynamical landscape of these systems, and for development
of associated robust model reduction strategies. There has
been a significant amount of work in this area [1,10,12–14].

In the present work, we describe our work in this
area, building on the existing literature. We formulate the
stochastic differential equation (SDE) mathematical setting
for singularly perturbed stochastic chemical systems, and
outline our initial steps towards a random dynamical system
(RDS) framework to study the dynamics of these systems.
The RDS framework has key advantages as outlined below.
We discuss this framework and demonstrate its use for dy-
namical analysis, and identification of underlying manifolds
in a stochastic version of the Davis-Skodje problem [4],
where a simple analytical manifold is embedded in a two-
dimensional model system.

II. MATHEMATICAL SETTING

A. Singular Perturbation

Consider a system involving two well-separated
timescales:

dx

dt
= f(x, y; ε), ε

dy

dt
= g(x, y; ε), (1)

where ε is a small parameter. Since dy
dt can be much larger

than dx
dt , y is called the fast variable and x is called the

slow variable.
System (1) behaves singularly in the limit ε→ 0 and the

results depend on the way this limit is performed. If we
simply set ε = 0, it degenerates to the reduced system

dx

dt
= f(x, y; 0), 0 = g(x, y; 0). (2)

We assume that there exists a differentiable manifold with
equation y = y∗(x) on which g(x, y∗(x); 0) = 0 for all
x. Then y = y∗(x) is called a slow manifold [2], and the
dynamics on it are described by the reduced equation

dx

dt
= f(x, y∗(x); 0). (3)



For long times, solutions of equations (1) remain in an
ε−neighborhood of the slow manifold, and are thus well
approximated by the reduced equation (3) [11,16].

To study the effect of noise on the slow-fast system
(1), we perturb both equations with noise, with different
intensities due to different timescales. Since the diffusive
nature of Brownian motion causes paths to spread like

√
t,

we choose the following scaling of the noise intensities:

dX(t) = f(X,Y ; ε) + µF (X,Y ; ε)dW (t), (4)
εdY (t) = g(X,Y ; ε) + σ

√
εG(X,Y ; ε)dW (t), (5)

in which µ2 and σ2 measure (rate of diffusion)2/the speed
of drift for X and Y respectively, and W (t) denotes the
standard Brownian motion. Here the parameters µ, σ and ε
are considered to be small.

B. Methodology

To study the effect of noise on the invariant manifold of
a randomly perturbed system, the traditional stochastic ap-
proach is to solve the Fokker-Planck equation for stationary
solutions. This is usually done numerically by integrating
the system forward in time and then finding the time average
to obtain the probability density function (PDF). However,
such an approach provides only statistical information, not
the geometric details of the invariant manifold. We propose,
rather, to use the RDS approach to study the geometric be-
havior of random invariant manifolds of stochastic chemical
systems.

One major advantage of the RDS approach is that it is
based on path-wise analysis rather than a simple ensemble
of realizations. Moreover, the RDS approach is a pullback
approach, in which the system runs from a time in the past
until the present time, instead of integrating forward in time.
By looking at the system in this pullback point of view, the
geometric structures associated with the invariant manifold
of stochastic systems emerge naturally, as the RDS theory
is based on random invariant measures.

III. A BENCHMARK MODEL - STOCHASTIC
DAVIS-SKODJE SYSTEM

The Davis and Skodje (D-S) model [4,15] consists of a
two-dimensional system which models a spatially homoge-
neous premixed reactor and is given by

ẋ(t) = −x(t), (6)

ẏ(t) = −γy(t) + γ
x(t)

1 + x(t)
− x(t)

(1 + x(t))2
, (7)

where γ (1/γ corresponds to ε) measures the stiffness of
the system. The system has one stable equilibrium (0, 0)
and one stable exact slow manifold y∗(x) = x

1+x .
Our purpose is to study the effect of noise on the fast-

slow system (6) - (7). For the system to make physical sense,

we choose multiplicative noise to ensure solutions are non-
negative, and obtain the stochastic Davis-Skodje system:

dX(t) = −X(t)dt+ µX(t)dW (t), (8)

dY (t) =

(
−γY (t) + γ

X(t)

1 +X(t)
− X(t)

(1 +X(t))2

)
dt

+σ
√
γY (t)dW (t). (9)

Since system (6) - (7) has one unique exact slow man-
ifold, we expect that the main effect of the noise terms
µX(t)dW (t) and σ

√
γY (t)dW (t) is to cause solutions

to fluctuate around their deterministic counterpart, and ap-
proach to a “random slow manifold” after a certain period of
time. We will construct explicitly the random slow manifold
of system (8) - (9) by using the random dynamical system
approach.
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Abstract— Finite-time Lyapunov analysis (FTLA) is used to
determine reduced-order manifold structures in the flow of
nonlinear dynamical systems exhibiting two-timescale behav-
ior. The approach is described and explained in the context of
a simple example.

I. INTRODUCTION

The purpose of the paper is to present a methodology
for diagnosing two-timescale nonlinear behavior and char-
acterizing the associated manifold structure, and to illus-
trate its use. The methodology is inspired by the intrinsic
low-dimensional manifold method (ILDM) [1], but instead
of using eigenvalues and eigenvectors, it uses finite-time
Lyapunov exponents and vectors. The methodology [2], [3]
derives from the asymptotic theory of partially hyperbolic
systems [4]. The use of Lyapunov exponents and vectors
has also been explored in [5].

II. FINITE-TIME LYAPUNOV ANALYSIS

The goal of our analysis is to diagnose two-timescale
behavior of nonlinear dynamical systems and to determine
points on the reduced-order slow manifold. The timescale
information is based on the finite-time Lyapunov exponents
and vectors (FTLE/Vs). Consider a nonlinear dynamical
system ẋ = f(x) with associated tangent linear dynamics
v̇ = Df(x)v where x(t) ∈ Rn and v(t) ∈ TxRn. Φ(t,x)
denotes the fundamental matrix of the linear dynamics for
initial conditions x(0) = x and Φ(0,x) = In. The forward
and backward FTLEs are given by

µ±(T,x,v) := (ln ‖Φ(±T,x)v‖)/T, (1)

for propagation time T > 0. The corresponding forward
and backward FTLVs, l±i (±T,x), i = 1, . . . , n, can be
computed by choosing the proper vectors from the singular
value decomposition of the transition matrix Φ(±T,x) [6],
[2]. The orthonormal FTLVs define the following subspaces,
for i = 1, . . . , n:

L+
i (T,x) := span{l+1 (T,x), . . . , l+i (T,x)},
L−i (T,x) := span{l−i (T,x). . . . , l−n (T,x)}, (2)

Definition [3]: A set X ⊂ Rn, n ≥ 2, is a uniform finite-
time two-timescale set for ẋ = f(x), with fast, slow and
convergence time constants (ν−1, σ−1 and ∆µ−1), if there
exist positive integers ns, nc, nu, with ns + nc + nu = n,
nc ≥ 1 and ns + nu > 0, a start time ts, a cut-off time tc,

and an available averaging time T with 0 ≤ ts < tc ≤ T
such that the following three properties are satisfied. We use
the notation T = (ts, T ] and Tc = (ts, tc].
1) There exist positive constants β > α > 0 such that,
uniformly on T ×X , the forward and backward Lyapunov
spectra are separated by gaps of size ∆µ = β − α into ns,
nc and nu dimensional subsets.
2) For each x ∈ X , there is a continuous splitting of the
tangent bundle

TxRn = Es(T ,x)⊕ Ec(T ,x)⊕ Eu(T ,x) where

Es = L+
ns , Ec = L+

ns+nc ∩ L−ns+1, Eu = L−ns+nc+1.
(3)

3) There exist ν > σ > 0 such that at each x ∈ X for all
t ∈ Tc

v ∈ Es(T ,x)⇒

{
‖Φ(−t,x)v‖ ≥ eνt‖v‖
‖Φ(t,x)v‖ ≤ e−νt‖v‖

v ∈ Ec(T ,x)⇒ e−σt‖v‖ ≤ ‖Φ(±t,x)v‖ ≤ eσt‖v‖

v ∈ Eu(T ,x)⇒

{
‖Φ(−t,x)v‖ ≤ e−νt‖v‖
‖Φ(t,x)v‖ ≥ eνt‖v‖

.

(4)
Provided that X is a uniform finite-time two-timescale

set, we can now look for a finite-time nc-dimensional slow
manifold S(T ) such that f(x) ∈ Ec(T ,x) for all x ∈ S(T ).
The set

{x ∈ X : 〈f(x),w〉 = 0,∀w ∈ (Ec(T ,x))⊥} (5)

thus satisfies a necessary condition for a finite-time slow
manifold.
Rather than using eigenvectors of Df(x) as in the ILDM
method [1], or direction information from a neighboring
manifold [7], we use the appropriate Lyapunov vectors to
form the basis for the orthogonal complement of Ec(T ,x)

(Ec(T,x))⊥ = span{l−1 (T,x), . . . , l−ns(T,x),

, l+ns+nc+1(T,x), . . . , l+n (T,x)}.
(6)

We assume that the manifold can locally be parametrized by
a subset of nc of the n system coordinates and represented
as a graph. The nc independent variables are chosen such
that their coordinate axes are not parallel to any directions
in (Ec)⊥ and the remaining n − nc are found by solving
the orthogonality conditions in (5).



A. Example - 4D Hamiltonian System

Consider the following Hamiltonian system which arises
from the first-order necessary conditions of an optimal
control problem

ẋ1 = x2,
ẋ2 = −

(
cx2 + k1x1 + k2x

3
1 + λ2/m

)
/m,

λ̇1 = λ2
(
k1 + 3k2x

2
1

)
/m,

λ̇2 = −λ1 + cλ2/m.

(7)

We consider (7) in the form ẋ = f(x) with x =
[x1 , x2 , λ1 , λ2]T ∈ R4 and f defined appropriately. For
small values of m, the system can be expected to evolve
on two disparate timescales. For the numerical results we
use m = 0.5 , k1 = 1 , k2 = 0.01 , and c = 4

√
k1m.

FTLA is applied in a region X , chosen such that the ILDM
method is applicable yet the slow manifold curvature is
large enough that the ILDM method produces noticeable
error. We present results for five points that are represen-
tative of all the points in X . Figure 1 shows the forward
and backward Lyapunov exponents for the five points as
functions of the averaging time T . With ns = nu = 1,
nc = 2, α = 0.5, β = 5.6, ∆µ = 5.1, σ = 0.7,
ν = 5.2, ts = 0 and tc = T = 0.5, the conditions, for a
uniform two-timescale set resolvable over 2.6 convergence
time constants, are satisfied.
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Fig. 1. Superposition of backward and forward FTLEs for points in X .
Note that only segments of the y-axis are shown to highlight the central
FTLEs.

Computing Slow Manifold Points Using FTLA: The slow
subspace Ec(T ,x) and its orthogonal complement have
dimension nc = n− nc = 2 and can be written as

Ec(T ,x) = L+
3 (T ,x) ∩ L−2 (T ,x)

(Ec(T ,x))⊥ = span{l−1 (T ,x), l+4 (T ,x)}. (8)

We use (x1, λ1) as the independent coordinates and com-
pute the (x2, λ2) coordinates for the graph of S(T ) by
solving the orthogonality conditions in (5). Because the
exact location of the slow manifold is not known, we use
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Fig. 2. Projection onto the λ1-x2 plane of the forward and backward
propagations from initial points on the slow manifold (circles).

the following consistency check to assess accuracy. The
estimated slow manifold points x̂j are propagated backward
and forward in time to φ(t±, x̂j). Then for each of the end
points, we fix the independent variables, x1 and λ1, and use
FTLA to recompute the dependent variables, x2 and λ2 for
the slow manifold point estimate. The degree of consistency
between the propagated estimates and re-estimated values
of the dependent variables is an indication of accuracy. The
same procedure is performed for the ILDM estimates.
Fig. 2, showing points and trajectories projected onto the
λ1-x2 plane, indicates that FTLA is more consistent than
the ILDM method. Although the initial ILDM points (red
circles) appear close to the initial FTLA points, the high
degree of inconsistency at the end points indicates greater
inaccuracy.
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Simplifying Chemical Kinetic Systems under
Uncertainty using Markov Chains

Luca Tosatto∗ and Youssef Marzouk∗
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Abstract— We describe a novel method to obtain skeletal
reduction of chemical mechanisms. The reduction method
maps the system of equations that describe the evolution of the
chemical mixture into a set of memoryless Markov processes,
one for each chemical element. Each Markov process “tracks”
an atom through its chemical evolution, i.e., each state in
the Markov process corresponds to a chemical species and
the transition probability between two states models the
probability that an atom is transfered between molecules. We
show that this methodology provides an inexpensive estimate
of the species elimination error in stirred reactor problems.

I. INTRODUCTION

In the last decade, the sizes of chemical mechanisms
used in combustion modeling have grown by orders of
magnitude [1], increasing from 20–30 species for methane
combustion to more than 1000 in some recent detailed
mechanisms [2]. For this reason, the numerical solution
of multidimensional reacting flow still constitutes a great
challenge that approaches the limit of the world’s largest
computational facilities [3].

A way to bridge the gap between computational fluid
dynamics and complex chemistry is to replace the full set
of chemical species and reactions by a simpler one. The
new smaller model is optimized for a given problem and
can thus generate results of the same accuracy at a much
smaller computational cost.

We focus our attention on skeletal reduction, i.e., on the
elimination of unimportant species from the mechanism. A
number of techniques are available in the literature to per-
form this simplification: sensitivity analysis [4], CSP sim-
plification [5], directed relation graph (DRG) reduction [6],
which evolved into an array of derived techniques [7], [8],
[9], path flux analysis [10], and error minimization [11].

All these methods can be subdivided in two groups:
1) Intrusive methods, which extract information from

the detailed mechanism and use this information to
estimate the error generated by the elimination of
species;

2) Inspective methods, which directly test a set of can-
didate reduced mechanisms and thus generate the
skeletal mechanism in a trial-and-error fashion.

The inspective approach typically results in a much smaller
skeletal mechanism but is more computationally expensive.
Furthermore, there is a link between intrusive and inspective

methods; the error estimate provided by an intrusive method
can be used to “guide” an inspective method in the adap-
tive generation of a skeletal mechanism. For example, the
DRG (intrusive) method naturally evolved to the DRGASA
(inspective) method.

The present contribution shows that Markov processes
can be used to generate a computationally inexpensive
estimate of the elimination error.

II. DEFINITION OF THE MARKOV PROCESSES

We consider stirred reactor problem, i.e., a non-
equilibrium steady-state chemical mixture, defined by a
vector of mass fractions Yi, i = 1, . . . , N and a temperature
T . The steady-state condition is provided by a set of
reactions R characterized by the reaction rates rα, α =
1, . . . ,M and a stoichiometric matrix νiα. Furthermore,
we consider the set of chemical elements E (for a typical
combustion problem, E includes hydrogen, nitrogen, oxygen
and carbon) and the composition matrix niK , whose entries
represent the number of atoms of element K in molecule i.

In a stirred reactor, the mass fraction vector is calculated
as the steady-state condition of a stiff system of differential
equations, which is computationally expensive to solve.
For this reason, we introduce an alternative probabilistic
representation of the problem, in which atoms are tracked
while they move from one chemical species to another. In
particular, a Markov process will be defined for each of the
chemical elements.

Any given atom of element K can be part of one of
the molecules in set S (or at least any molecule for which
the composition matrix entry niK > 0). Thus we can
say that an atom of type K can assume different states
in S. Chemical reactions can cause a change of state of
the atom since molecule i could be “transformed” into
a different chemical species, which we will indicate with
index j. Without resorting to molecular simulations—i.e., in
the continuous regime of large species populations, typical
for gas-phase combustion—it is possible to compute the
probability that atom K will transition from i to j.

Elementary probability theory suggests that the probabil-
ity of an i → j transfer for atom K is given by the sum
over all reactions of the probability that reaction α occurs



and that this reaction transfers the atom

P(K; i→ j) =
∑
αP(K transferred|reaction α)
P(reaction α) .

This probability can be calculated from the reaction rates;

PKi→j =
∑

α∈R(i)

nKjν
−
αj∑

`∈Rα
nK`ν

−
α`

r+α∑
β∈R(i) rβ

, (1)

where R(i) is the set of reactions that involve species i and
PKi→j is a compact notation for P(K; i→ j).

III. THE ERROR ESTIMATE

In order to obtain an elimination error estimate from
(1), we introduce the hypothesis that the chemical process
under investigation is qualitatively modeled by a one-step
irreversible global reaction. This means that there are a
set of species—the global products (typically CO2 and
H2O)—whose transition probabilities are well approximated
by PKi→j = δij and that act as absorbing states in the
Markov process. Conversely, the global reactants provide
initial conditions, meaning that we postulate that the ini-
tial distribution of the Markov process concentrates the
probability of each atom K on the global reactants. Under
this approximation the transition probability (1) models the
evolution of microstates from reactants to products.

For a given set Sr ⊂ S of potentially unimportant species
that could be removed, we define the error estimate as

E(Sr) = P(reaching Sr before a global product) , (2)

which can be efficiently calculated from the transition
probability (1).

IV. RESULTS

We consider a stirred reactor with an inlet temperature
of 300K, in which a stoichiometric mixture of methane
and oxygen is injected along with 90% nitrogen (by mass).
The quantity of interest (QoI) in our study is the extinction
timescale; to compute this QoI, we perform a continuation
solution, progressively reducing the residence time in the
reactor until extinction occurs. Starting from the 53-species
GRI mechanism [12] we randomly generate skeletal reduced
mechanisms of size 47 to 25. Each mechanism is tested and
the error estimate (2) is calculated along with the true error
in extinction time. Figure 1 shows that the error estimate
correlates very well with the elimination error.

V. CONCLUSION

A novel intrusive approach to skeletal reduction has been
presented, which relies on a Markov process description of
the chemical state to estimate the error associated with the
elimination of a set of species. The error estimate correlates
very well with the actual elimination error. Thus it can be
used to guide intrusive skeletal reduction algorithms.
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Fig. 1. Scatter plot of error estimates and the true elimination errors for
different reduced mechanisms, showing strong correlation.
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Abstract— Significant progress is being made in the develop-
ment of detailed chemical kinetic mechanisms for transporta-
tion fuels and their surrogates, leading to models involving
up to several thousands molecular species. A major challenge
is to make use of this chemical knowledge in turbulent
combustion models, which most often become intractable if
more than tens of species are considered. In this work,
we propose a novel adaptive chemistry strategy specifically
designed for LES/particle PDF simulations of non-premixed
turbulent flames with the following key properties: (i) the
composition space is partitioned a priori into a user-specified
number of regions, over which suitable reduced chemical
representations and chemical models are identified; (ii) the
computational particles in the LES/PDF simulations carry
only the variables present in the reduced representations;
and (iii) the region a given particle belongs to is identified
using a low-dimensional binary tree search algorithm, thereby
keeping the run-time overhead associated with the adaptive
approach to a minimum. An overview of the adaptive strategy
is first presented, with details being provided for the major
components of the algorithm. The adaptive treatment of
the chemistry is then implemented within the ISAT/RCCE
framework validated previously by Hiremath et al. [Hiremath,
Ren & Pope, Combust. Flame, 2011]. A proof-of-concept of
the combined adaptive chemistry and tabulation strategy is
presented for the simpler partially stirred reactor (PaSR) with
pair-wise mixing configuration. Preliminary results indicate
that compared to results based on a single reduced repre-
sentation for all particles, the adaptive methodology provides
similar accuracy at a lower overall computational cost.

I. INTRODUCTION

The understanding of chemical kinetics for hydrocarbon
fuel combustion has exploded over the past two decades,
leading to the development of ever growing detailed kinetic
schemes for a wide range of molecular species relevant to
hydrocarbon combustion [1]. With more accurate rate rules
and improved mechanistic considerations, some of the
latest published mechanisms are approaching 104 species
and as many reactions [2]. However, these advances in
chemical kinetics and detailed model development have to
be integrated with Computational Fluid Dynamics (CFD)
tools to fully realize their potential in terms of improved
understanding and optimization of practical combustion
devices. The real challenge then is to maximize the
level of chemical detail that can be afforded in CFD.

One strategy to address this challenge was recently
proposed by Hiremath et al. using a combination of
dimension reduction and tabulation [3] and applied to the
simulation of turbulent flames. Such techniques greatly
increase the level of description of the chemistry that
can be used, allowing, for example, the use of about
40 species in large-eddy simulation/probability density
function (LES/PDF) calculations. However, significant
further gains are clearly needed to handle the chemical
complexities of real fuels, which can be attained through
the development of adaptive chemistry methodologies,
in which (ideally), in different regions of the flow, the
smallest possible reduced mechanism is used as required
by the local chemical activity and thermodynamic state.
Several adaptive chemistry approaches have been proposed
recently in the literature (e.g. [4], [5], [6], [7], [8], [9]),
generally yielding quite promising results.

In this work, we propose an adaptive strategy to handle
large chemical mechanisms tailored for LES/PDF sim-
ulations of non-premixed combustion, with the follow-
ing constraints: the framework should be compatible and
work synergistically with existing LES/PDF implemen-
tations (e.g.[10]), the overhead cost associated with the
adaptive treatment of the chemistry should be small, and
only reduced representations should be used to evolve the
composition of the particles. In the following, a overview of
the adaptive methodology is provided, and the integration
of the adaptive algorithm within the ISAT/RCCE framework
of Hiremath et al. [3] is discussed.

II. ADAPTIVE CHEMISTRY METHODOLOGY

We consider a detailed chemical mechanism involving
a set of species ΦD, of cardinality nD, and we denote
the mass fraction of the species by the nD-vector Y. We
consider the case of constant-pressure combustion, so that
the thermochemical state of the fluid is fully characterized
by Y and the temperature T . In the LES/PDF calculation,
the fluid within the turbulent flow field is represented by a
large number of particles. At time t, the nth particle has a
composition C(n)(t) = {Y(n)(t), T (n)(t)}. The simulation



marches in time in uniform time steps ∆t. While the parti-
cles move in physical space due to the resolved flow and the
unresolved turbulence, the particle compositions change due
to just two processes: reaction and mixing. We call reaction
mapping over a time step ∆t the evolution from C(n)(t) to
C(n)(t+ ∆t) due to reaction. In this context, our approach
to adaptive chemistry is decomposed into a pre-processing
step to define the reduced chemistry framework prior to the
flame simulations, and a procedure to dynamically assign
the appropriate reduced representation and model to each of
the particles during the flame simulation. More specifically,
the strategy consists of the following components:

A. Pre-processing of the chemical kinetics

The pre-processing uses the detailed kinetic model in
simpler Partially Stirred Reactor calculations, whose con-
ditions are representative of the turbulent flame simulation
to be performed, to generate a large database of detailed
test compositions. This database is used for:

1) Partitioning: Suitably partition the composition
space into a number of regions, the J th one being
denoted by RJ , using a cutting-plane method.

2) Reduction: For each region RJ , develop an accurate
reduced chemical model MJ , in which the composi-
tion has a reduced representation cJ = {yJ , TJ}. The
reduced mass fraction vector yJ is of size nR,J �
nD. This is accomplished using the Directed Rela-
tion Graph with Error Propagation reduction tech-
nique [11].

The partition then is stored as a binary tree, associated with
a set of reduced models, one for each leaf of the tree, and
a set of cutting planes, one for each node of the tree.

B. Adaptive approach in flame simulation

In the LES/PDF computations, the particle composi-
tion located in region RJ carries the reduced composition
c
(n)
J (t) = {y(n)

J (t), TJ} instead of C(n)(t), and this com-
position is advanced during the reaction sub-step using the
reduced model MJ . This requires two main procedures:

1) Conversion: Convert a particle composition from
reduced representation J to reduced representation L
as the particle moves across regions. A simple merge
of the representations, followed by normalization is
used here to get the new mass fraction vector.

2) Classification: An efficient binary tree search based
on a well-chosen small set of species is used to
determine the region a given particle belongs to based
on its reduced representation.

III. PRELIMINARY RESULTS

The adaptive strategy is tested using PaSR calculations
for non-premixed propane/air and a detailed mechanism
containing 115 species [12]. The composition space is
partitioned into 20 regions based on a detailed sample

database of 104 compositions. The evolution of the particle
compositions are then compared to the detailed solution for
different levels of reductions, and shown in Fig. 1. The
errors obtained when using a single reduced representation
and single reduced model for all particles are also shown.
While only basic algorithms for all components involved in
the adaptive approach have been implemented, these results
indicate that the adaptive methodology provides similar
accuracy at a lower overall computational cost compared
to single model approaches.

Fig. 1. Evolution of the overall error in a propane/air PaSR calculation
between detailed representation, a 43-species (green) and a 34-species
(blue) single reduced representations, and adaptive representations with
an average of 30 (black) and 34 (red) species.

IV. INTEGRATION WITH ISAT/RCCE

The integration within the framework of Hiremath et al.
follows in a straightforward manner. The size of the reduced
representations are further decreased by introducing RCCE
to complement species elimination provided by DRGEP,
while for the reaction fractional step in flame simulation,
separate ISAT tables are used for each region, reducing
significantly the time to build the tables and accelerating
the retrieval of reaction mappings.
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Abstract— Chemical combustion models in terms of ordi-
nary differential equations correspond to finite dimensional
dissipative dynamical systems involving a multiple time scale
structure. A slow mode-description of the full model for dimen-
sion reduction purposes is achieved via computation of slow
manifolds which can be identified in these reaction systems.
We discuss basic analytical components of model reduction by
means of a linear test model and present a boundary value
problem bundling ideas of many model reduction approaches.

I. Introduction

Chemically reacting flows comprise an interplay between
convective and diffusive species transport and chemical
reaction processes involving a large number of chemical
species and reactions. Together with the stiffness of the
kinetic model equation with time scales ranging from
nanoseconds to seconds, simulation of chemically reacting
flows (for instance in combustion processes) is often nearly
impossible in reasonable time. This calls for complexity
reduction and multi-scale approaches.

Most of those model and complexity reduction techniques
exploit the time scale separation of the model solution into
fast and slow modes by approximating the large time scale
system dynamics via eliminating the fast relaxing modes by
enslaving them to the slow ones. This results in invariant
manifolds of slow motion (SIMs) possessing the property
of attracting system solution trajectories. The process of
mapping a subset of the chemical species of the full model
onto the full species composition by determining a point on
a SIM is provided by an implicitly defined function. This
species reconstruction technique is used by many model
reduction approaches for SIM identification.

In this talk we discuss basic analytical issues of model
reduction by means of a linear test model and present, why a
(reverse) trajectory-based optimization approach suggested
by Lebiedz [3] identifies SIMs exactly for an infinite time
horizon [7] yielding the formulation of a boundary value
problem.

II. Linear TestModel: Analytical Treatment

For simplicity we consider a two-dimensional linear
ODE test model, representing chemical combustion model

equation:

∂tz1(t) =

(
−1 −

γ

2

)
z1(t) +

γ

2
z2(t) (1a)

∂tz2(t) =
γ

2
z1(t) +

(
−1 −

γ

2

)
z2(t), γ > 0, (1b)

with γ ∈ R, t ∈ R, z1, z2 ∈ C∞ (R,R), and analytical solution

z1(t) = c1e−t + c2e(−1−γ)t (2a)

z2(t) = c1e−t − c2e(−1−γ)t, c1, c2 ∈ R (2b)

with ci, i = 1, 2 being integration constants, to be deter-
mined by setting initial values. Due to the availability of
explicit formula for the SIM, this model is well suited for
analytical treatment. This formula is achieved by eliminat-
ing the fast modes (here implying setting c2 equal to zero)
yielding z1 ≡ z2 being the SIM. Subsituting this into (1)
results in the following reduced model equation:

z1(t) = z2(t) (3a)
∂tz2(t) = −z2(t) (3b)

with analytical solution z1(t) = z2(t) = c1e−t being equiva-
lent to the solution of the full model (2) without fast modes
(c2 = 0).

Finding an additional criterion that automatically elimi-
nates the fast modes without knowing the analytical solution
of the underlying ODE model equations is the main chal-
lenge of model reduction approaches.

III. SlowManifold Computation

A. Boundary Value Problem

In dissipative ODE systems where it holds that

d (z(t0),SIM) > d (z(t∗),SIM) (4)

with t0 < t∗, d (·, ·) ∈ C∞ (Rn × Rn,R) being the distance
function, and z(t∗) meaning z(t∗) = z (t∗ − t0, z(t0)) (i.e. the
solution of the initial value problem ∂tz(t) = S (z(t)) , z(t0) =

zt0 evaluated after a time period of t∗ − t0), the point of
interest (POI) z(t∗) identifies a SIM exactly for t∗ − t0 = ∞

and d (z(t0),SIM) ∈ R:

d (z(t∗),SIM) = 0. (5)



Having this in mind, the following general formulation of a
boundary value problem for SIM computation is presented:

∂tz(t) = S (z(t)) (6a)
z j(t∗) = zt∗

j , j ∈ Ifixed, t∗ ∈ R (6b)

z j(t0) = K j, j < Ifixed, K j = const. ∧ |K j| , ∞ ∀ j < Ifixed
(6c)

with t0 < t∗ in the reverse mode formulation [7], [8].
Here, (6a) describes the system dynamics, (6b) the fixa-
tion of those variables that parameterize the SIM at time
t = t∗, and Ifixed denotes the index set containing those
reaction progress variables. For globally attractive sys-
tems the choice of K is without significance to achieve
limt0→−∞ z(t∗) ∈ SIM, whereas in realistic chemical pro-
cesses the choice of K plays a significant role caused by
additional physical constraints restricting the area where
the ODE model is defined and thus, t0 can only be chosen
as small as possible. This idea of using a boundary value
method for slow manifold computation is also found in
[2], [9], [10] for example. Exact SIM identification by
using this reverse boundary value problem with an infinite
time horizon is confirmed by analytical and numerical tests
applying the linear model (1) (see [8]).

B. Trajectory-Based Optimization Approach and Zero-
Derivative Principle

For a ‘good choice’ of K we use the derivative idea
from the Zero-Derivative Principle (ZDP) [1], [11] (POI
is closer to SIM with higher derivatives) and relate it to the
trajectory-based optimization approach [3], [4], [5], [6], [7]
leading to the following formulation of a model reduction
technique combining both the boundary value idea from
above and the derivative idea of the ZDP:

min
z(t)
‖∂m

t z(t)‖22
∣∣∣∣
t=t0
, m ∈ N (7a)

subject to

∂tz(t) = S (z(t)) (7b)
0 = g (z(t∗)) , t∗ ∈ R (7c)

z j(t∗) = zt∗
j , j ∈ Ifixed (7d)

with g ∈ C∞
(
Rn,Rb

)
containing possible additional con-

straints (for instance chemical element mass conservation
relations) and can be omitted for the linear test model above.
In this formulation K improves with higher m yielding

lim
m→∞

z(t∗) ∈ SIM (8a)

lim
t0→−∞

z(t∗) ∈ SIM. (8b)

Both analytical and numerical computations confirm these
results.

In numerical implementations for realistic combustion
processes difficulties arise from choosing m > 2. The kinetic

ODE model is only defined on a polyhedron in phase space
based on additional constraints entering the optimization
problem such that t0 cannot get arbitrarily small. Thus, for
a good SIM approximation in realistic models two issues
have to be addressed:
• choosing m as large as possible.
• choosing t0 as small as possible.

C. How to Treat Constraints in Realistic Kinetic Models
Since the POI improves with smaller t0, the aim is a

minimal feasible choice of t0. We address this issue via
analytical treatment for the linear model (1).

Solving (7) with (1) analytically provides analytical
formula for the integration constants from (2) ĉ1 and ĉ2
dependent on t0 which are substituted into z1 = z1(ĉ1, ĉ2)
and z2 = z2(ĉ1, ĉ2) for solving the following optimization
problem yielding the minimal t0 that is feasible

min t0 (9a)

subject to

z1(ĉ1, ĉ2) ≥ 0 (9b)
z2(ĉ1, ĉ2) ≥ 0 (9c)

z1(ĉ1, ĉ2) ≤ n1z2(ĉ1, ĉ2) + b1 (9d)
z1(ĉ1, ĉ2) ≤ n2z2(ĉ1, ĉ2) + b2 (9e)

with (9b)–(9e) being the additional constraints entering the
model reduction above as function g. Solving (9) with
different choices of the constants results in a minimal
feasible choice of t0.
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Abstract—A detailed kinetic mechanism consisting of 116 

reactions and 26 species was obtained based on the NOxOUT 

mechanism proposed by Rota and the mechanism developed 

by Miller et al. The kinetic mechanism proposed in this 

contribution is suggested as a model of SNCR process using 

urea as reducing agent. The mechanism was validated with 

experimental data reported by Gentemann and Caton for 

various CO concentrations; good agreement of the detailed 

model with experimental data was obtained. The detailed 

mechanism was reduced to 44 reactions and 23 species. 

Agreement between the detailed and reduced kinetic 

mechanisms was good for the range of conditions of SNCR 

studied. The new reduced mechanism has been incorporated 

into CFD simulation in order to validate, the reduced reaction 

mechanism compares well the seven-step mechanism reported 

by Nguyen. 

I. INTRODUCTION 

The rapid industrialization has had a significant negative 

effect on air quality. Therefore, more stricte mission 

standards have fostered the development of technologies for 

control of emissions. Among them, selective non-catalytic 

reduction (SNCR) is a cost-effective post-combustion 

technology for controlling emissions of nitrogen oxides 

(NOx). SNCR consists in the controlled injection of a 

reducing agent, such as ammonia or urea, into the flue gas. 

Use of urea has been widely accepted due to its easier and 

safer handling. The relatively narrow temperature window 

over which significant NOx reduction can be attained 

depends on parameters such as composition of the flue gas 

(NOx, CO, H2O and O2), and reductant/NO molar ratio (or 

NSR) [1, 2]. 

Computational Fluid Dynamics (CFD) techniques have 

been used to simulate SNCR processes in order to gain a 

better understanding of the process as well as to obtain the 

best operating conditions. However, CFD simulations can 

be easily overwhelmed because kinetic models may involve 

hundreds of species and reactions[3].Moreover, coupling of 

turbulence and heat transfer phenomena with the detailed 

chemistry is very demanding on computer time and 

memory. Several authors have reported various reduced 

kinetic models for NOx reduction [3–6]; these models have 

been widely adopted in CFD modeling. 

The main objectives of this work are: (1) to develop a 

detailed mechanism based on kinetic mechanism reported 

in the literature and validate it with experimental data for 

SNCR process, (2) to reduce the detailed kinetic 

mechanism, and (3) compare the results of the reduced 

kinetic mechanism and of the detailed kinetic mechanism 

(4) evaluate its performance in CFD simulations. 

II. DEVELOPMENT OF THE DETAILED MECHANISM 

The detailed mechanism was based on the mechanism of 

Miller and Bowman [7]for NOx reduction using NH3, and 

the mechanism of Rota et al.[8]with urea, ammonia and 

isocyanic acid as reducing agents some elementary 

reactions related to SNCR process were chosen from the 

Miller and Rota mechanisms. 

Kinetic mechanism of 116 reactions and 26 species was 

determined. The results of the model were compared with 

experimental data (Table 1) reported by Gentemann[9], 

using four different CO concentrations..  
 

TABLE I. 
EXPERIMENTAL CONDITIONS OF GENTEMANN REPORT FOR 

SNCR PROCESS WITH UREA [9] 

 
Experimental conditions 

Temperature range 800-1300 K Nitric oxide 330 

Residence time 1.3-2.1 sec Urea 0-900 ppm 

Total reactor flow 1100 sccm Oxygen 5% 

ID reactor  1.8 cm Carbon monoxide 0,100,600,90

0 ppm 

Length 30.48 cm Nitrogen Balance 

 

 

 
 
Figure 1. Nitric oxide reduction as a function of reactor temperature for 0 

ppm carbon monoxide and for 5% oxygen. 
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Figure 2. Nitric oxide reduction as a function of reactor temperature for 
100 ppm carbon monoxide and for 5% oxygen. 

 

As presented in the above Figures 1 and 2, the simulated 

data of NO reduction using the detailed mechanism show 

good agreement, both qualitatively and quantitatively, with 

the experimental data of Gentemann[9].  

III. DEVELOPMENT OF REDUCED MECHANISM 

A new reduced chemical kinetic model was developed 

through a sensitivity analysis of the detailed mechanism. 

The reduced mechanism includes 44 reactions and 23 

species. Deviation between results of the detailed and 

reduced kinetic mechanisms was very small for the 

concentration of the more important species. For instance, a 

low Residual Square Sum (RSS) value and a high 

Determination Coefficient (r
2
) of 0.98 were obtained when 

comparing the two mechanisms (see Figures 3 and 4).  

 
 
 
 
 
 
 
 
 
 
 
Figure 3. Comparison between detailed kinetic mechanism and reduced 

kinetic mechanism in NO reduction 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.Carbon monoxide concentration as a function of the temperature 

using detailed kinetic mechanism and reduced kinetic mechanism  

 

The reduced kinetic mechanism was incorporated into a 

CFD model without excessive computational load into the 

simulation (less than two times that of a reduced 

mechanism with 7 reactions and 13 species). The reduced 

reaction mechanism compares well a seven-step mechanism 

for an isothermal reactor at 940ºC, Figure 5. 

 
Figure 5. Comparison of simulations results using mechanism reported by 
Nguyen and mechanism proposed in this work. Inlet conditions: 400ppm 

NO, 5%v/v H2O, 12%v/v O2 and balance N2. 
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Abstract— Mechanism reduction techniques are used to 
develop a class of adaptive preconditioners for integrating the 
ordinary differential equations (ODE) associated with large 
chemical kinetic mechanisms.  The new adaptive precon-
ditioners reduce the computational cost by several orders of 
magnitude relative to traditional dense solution methods for a 
detailed 2-methylnonadecane mechanism (C20H42 with 7172 
species). 

 

I. INTRODUCTION  
Preconditioners are sought to increase the convergence 

rate of the iterative linear system solver embedded within 
the implicit ODE solver.  In particular, the linear system 
solver is used for every iteration of the Newton-Raphson 
nonlinear solver, which computes the chemical state at 
future timesteps in the implicit discretization of the ODEs 
[1].  A good preconditioning matrix for ODE solvers is one 
that captures the dominant behavior of the system 
evolution, but is significantly easier to solve than the 
complete system [2]. 

The Jacobian matrices associated with the ODEs of 
reduced mechanisms are thus ideal candidates for use as 
preconditioners.  A preconditioner need only serve as an 
approximation to the true ODE system, which is then 
improved by the iterative linear and non-linear solvers to 
achieve the same solution as direct methods (to within a 
user-specified accuracy).  This means that the reduced 
mechanism selected for the preconditioner can be smaller 
and lower in fidelity than the standard approach to global 
mechanism reduction.  Further, the reduced mechanism 
must only be accurate for the chemical state over the 
duration of an individual timestep, which means even 
greater reduction is possible by allowing the 
preconditioning mechanism to adapt.  This feature, referred 
to as adaptive preconditioning, allows the integration of 
detailed chemical kinetic mechanisms to occur at a cost 

                                                             
 This work performed under the auspices of the U.S. Department of Energy 
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comparable to methods using on-the-fly mechanism 
reduction without any loss of accuracy. 

 

II. APPROACH 
A number of adaptive preconditioners are tested using 

several different reduction heuristics.  The simplest reduc-
tion technique is based on removing reactions that have a 
slow characteristic timescale relative to the integrator 
timestep.  To filter out the slow reactions in the 
preconditioner matrix P, a threshold operation is applied to 
the Jacobian matrix B of the backward differentiation 
formulas (BDF) for the stiff ODE integrator.  Specifically,  

 Pij =
Bij
0

if i = j  or |Bij | > η  

otherwise,

!
"
#

$#
 (1) 

where η is a nondimensional, user-specified threshold.  A 
more complete description of the approach to reducing the 
mechanism in this preconditioner is found in [3].  

Other preconditioners are also tested as part of this 
investigation, but none have been found so far to produce a 
measurably faster method than the simple reaction filtering 
approach in (1). As a consequence, the computational 
timings for these other preconditioners are not discussed in 
detail. The filter metrics for these other preconditioners 
include: (i) the species coupling frequency normalized by 
the destruction rate (i.e., row-normalization); (ii) the 
species coupling frequency normalized by the perturbation 
species destruction rate (i.e., column normalization); (iii) 
the maximum and minimum of metrics (i) and (ii); and (iv) 
the species coupling metric used in the technique in [4] for 
mechanism reduction via directed relational graph with 
error propagation (DRG-EP) analysis. It is interesting to 
note that filtering by the DRG-EP metric offers large 
reductions in the preconditioner size near equilibrium. 
However, the performance is not consistent over the range 
of conditions tested due to convergence problems. Further 
investigation is necessary to apply this more sophisticated 
preconditioner in a manner that is able to systematically 
avoid the non-linear convergence errors currently observed. 



 

Fig. 1. Comparison of the computational cost between the new adaptive 
preconditioner approach (blue solid circles) and the traditional ODE solver 
using dense matrix methods (red empty squares). 

III. TEST CASES 
The average computation times are compared between 

two approaches for integrating a constant volume, 
homogenous reactor model.  The first approach is based on 
the traditional stiff-ODE solver methods first used in 
chemical kinetics.  This approach is still found in some 
multi-dimensional computational fluid dynamics codes (e.g. 
KIVA-MZ [5]).  The second approach is based on the 
adaptive preconditioner (1) using the optimized integrator 
and sparse matrix settings developed in [6]. 

A total of ten different mechanisms are tested ranging in 
size from hydrogen (10 species [7]) to 2-methylnonadecane 
(7172 species [8]).  The initial compositions are a stoich-
iometric mixture of fuel and idealized air (79% N2 and 21% 
O2) at an initial pressure of 20 atmospheres.  Between eight 
and twenty-five initial temperatures are tested ranging from 
650 to 1450 Kelvin for each mechanism.  The evolution of 
each mixture composition is simulated for one second of 
physical time, and only those initial conditions leading to 
auto-ignition are included in the average computation time 
reported.  A more complete description of the test cases is 
found in [3] along with a full reference list and optimum 
threshold values η found for each mechanism. 

 

IV. RESULTS 
   The average computation time is obtained for each 

approach using a single thread of an Intel Xeon E5620 
processor (2.4 GHz clock speed with 1.33 GHz DDR3 ECC 
RAM). The timing results are shown in Fig. 1.  For the 
largest mechanism tested (2-methylnonadecane, 7172 
species), the adaptive preconditioner has an average 
solution time of 32 seconds compared to 105 seconds (more  

than one day) for the traditional approach, which represents 
three orders of magnitude of computational speedup. It is 
important to stress that while the mechanism is effectively 
reduced at each timestep by the filtering operation for the 
preconditioner (1), the mechanism governing the ODE 
system is unchanged. Consequently, the ignition delay 
times, temperatures and major species mass fractions 
(greater than 10-6) obtained through the two approaches 
agree to a minimum of six decimal places for the user-
specified relative tolerance of 10−8.  The mass fractions of 
trace species (between 10−12 and 10−6) are found to agree to 
within four decimal places. The computational speedup 
shown in Fig. 1 therefore occurs with no practical loss in 
accuracy. 

For the smaller mechanisms, hydrogen (10 species) and 
methane (53 species) the Jacobian matrix is sufficiently 
dense that the adaptive preconditioner is comparable to the 
traditional approach. In fact, for the hydrogen mechanism 
the dense approach is approximately two times faster. To 
avoid this penalty, a metastrategy can be developed that 
combines the two approaches and automatically selects the 
best method based on mechanism size or through automatic 
tuning when the mechanism information is first read into 
the simulation. 
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Abstract— Previous experiments on the Belousov-
Zhabotinsky reaction in a vortex array fluid flow demonstrated
the existence of “frozen fronts”—nontrivial and stable spatial
patterns—upon the addition of an external “wind”. While
certain aspects of these patterns could be explained, a
more complete theory was lacking. Invariant manifolds
are key geometric structures in the phase space of passive
fluid flows. These manifolds have been used to analyze
passive transport, e.g. in vortex arrays. Recent work has
developed the analogous invariant manifolds relevant for
front propagation in fluid flows—burning invariant manifolds
(BIMs). These studies have focused on BIMs as local barriers.
That is, the BIM has a finite physically relevant length which
is eventually circumnavigated by impinging fronts. Here we
show that BIMs can also form global barriers (which cannot
be circumnavigated) and that these are exactly the frozen
fronts originally observed in experiments.

I. INTRODUCTION

We are generally interested in systems that combine the
dynamics of front propagation with an underlying flow.
The front propagation aspect could model the progress of
a combustion reaction, a phase transition, or an infectious
disease. The front is assumed to clearly divide fluid into
“burned” and “unburned” regions. This propagation occurs
in a medium that is itself moving in a fluid-like way, and
propagation occurs normal to the local front tangent and
with a constant speed in the comoving frame.

II. FROZEN FRONTS

We are motivated by the experimental results in [1] that
demonstrated these frozen fronts. In these experiments, the
front propagation dynamics was supplied by the ruthenium-
catalyzed excitable Belousov-Zhabotinsky (BZ) reaction.
This autocatalytic reaction can be triggered by inserting a
silver wire into the reagents. The flow used was a linear
array of alternating vortices generated in a thin fluid using
magnetohydrodynamic forcing. Furthermore, a “wind” was
applied to this flow in order to counter the progress of
the reaction front. In this way one may generate “frozen
fronts”. These frozen fronts are locally stable and persist
over relatively long time scales. It can be seen that their
appearance and shape bear some relation to the flow in
which they exist, but this relation was not yet entirely clear.

III. INVARIANT MANIFOLDS

Invariant manifolds are fundamental geometric objects
that are important for understanding passive transport in

Fig. 1. (a) Reaction is pulled around by each vortex and then burns
through the separatrix to proceed into the adjacent vortex (not pinned). (b)
Sufficient wind to the left produces stable state. (Fig. 2 reproduced from
[1])

fluid flows [2]. These manifolds are defined for some
flow map φ. This can be representative of either a time-
independent or time-periodic flow. The stable (unstable)
manifold is the set of points that converge to a fixed point
under iteration of φ (φ−1). These manifolds divide classes
of trajectories which will diverge (have converged).

IV. BURNING INVARIANT MANIFOLDS

From the theoretical perspective, we may recast a PDE
approach to reaction propagation in flows as an ODE for
individual front elements. A front element’s position evolves
according to the underlying flow, and also propagation in
the direction of the unit normal at the constant speed v0.
The orientation of the front element is treated accordingly.

ṙ = u+ v0n̂

θ̇ = −n̂iui,j ĝj

(1)

In analysis of these equations, we find that as v0 increases
from 0, the invariant manifolds of this augmented system
split off of the passive invariant manifolds in either direc-
tion. Furthermore, these manifolds are oppositely oriented
(recall that they exist in xyθ space).

It is a primary result of recent work that these new
burning invariant manifolds (BIMs) are one-sided barriers
to front propagation in fluid flows [3], [4], [5]. Fronts are
bounded by them on one side, but pass through from the
other.

Unlike passive invariant manifolds, BIMs have cusps and
self-intersections (when projected into the xy-plane). A



Fig. 2. Reaction from left (green) bounded by BIM, but wraps around at
cusp.

Fig. 3. BIM (red) spans the channel—type 1 pinning. Reaction region
(green) converges to BIM and does not pass. Another BIM span related
by symmetry (blue).

cusp plays a particularly important role, as it marks the
end of the physically relevant portion of the BIM. Fronts
bounded by a BIM will spread along it until they reach the
cusp where they wrap around and fill in from the other side.
In this way, BIMs are often only local boundaries (Fig. 2).

V. ONSET OF PINNING

The main result of this work is to show that BIMs may
also be global boundaries, and that these boundaries are
exactly the frozen fronts observed in [1]. By adding a finite
amount of wind, a new cusp is created near the top of the
channel. We can understand this cusp formation as passage
of the BIM through a heteroclinic connection. A little more
wind causes this cusp to meet the channel wall forming a
complete span across the channel. This spanning BIM is
a global barrier. Reactions to the left will converge upon
this barrier, but not pass through (Fig. 3). We refer to this
particular type of front pinning as “type-1”.

VI. PINNING TYPES

The BIM theory of pinning also predicts other topo-
logically distinct pinning types, many of which have been
realized experimentally. We illustrate two other types here.

Type 2: Increasing the wind causes the BIM to sweep
backward along the channel wall, eventually creating an-
other cusp (Fig. 4). It may appear that pinning is lost
because a front converging to this BIM will wrap around
this cusp. However, the front would soon meet another
BIM emerging from the opposite channel wall that prevents
further progress. While neither of these BIMs alone forms a

Fig. 4. Blue BIM has been swept back far enough to create another cusp,
and then lifts from the channel wall. Reaction (green) converges to blue
BIM, wraps around cusp, but is then blocked by red BIM. Only together
the two BIMs form a span.

Fig. 5. Experimental realization of type 2 pinning. Time increases upward.

global barrier, together they form a composite pinning front.
Type 3: Increasing the wind further, this cusp reenters the

channel wall and each BIM is again a complete span across
the channel. The difference is that these BIMs intersect
(whereas in type-1 they do not). This means that in addition
to observing one or the other BIM as a pinning front, we
may observe their union as a third pinning front.

More complex pinning front topologies: Previous studies
[1] found the same phenomenon in flows with a number of
vortices arranged in a disordered 2D pattern. This analysis
on BIMs now explains these more complex pinning as
multiple BIMs (no one of which is a span) “sewn” together
by hiding each cusp behind the adjacent BIM.
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Abstract— We use a relatively recent nonlinear manifold
learning technique (diffusion maps) to parameterize low
dimensional attracting manifolds arising in the description
of detailed chemical kinetics mechanisms. With no a priori
knowledge about the shape and dimension of the manifold,
such an approach provides a way of solving a reduced (and
less stiff) set of equations in terms of automatically detected
slow variables. Advantages as well as disadvantages of the
approach are discussed.

I. INTRODUCTION

The solution of detailed models for chemical kinetics
(either ODE or discretized PDE) often poses severe nu-
merical difficulties mainly due to two aspects: First, the
number of degrees of freedom is large; second, the dynam-
ics is characterized by disparate time scales. As a result,
reactive flow solvers with detailed chemistry often become
intractable even for large clusters of CPUs, especially when
dealing with direct numerical simulation (DNS) of turbulent
combustion problems. This has motivated the development
of several approaches for reducing the complexity of such
kinetics models, by expressing them in terms of only a few
slow variables. However, there are no generally applicable
recipes for selecting a good global parameterization of the
reduced model, and the choice of slow variables often relies
upon intuition and experience. Clearly, a more systematic
approach in this respect would be highly desirable. In this
work, we follow a fully automated approach where the low-
dimensional attracting manifold is identified, parametrized
and a consistent reduced model constructed. The key step
is the parameterization, which is obtained by learning the
slow manifold through diffusion maps (DMAPs).

II. DIFFUSION MAPS

The diffusion maps approach has recently emerged as a
powerful tool in data analysis [1], [2], [3]. The basic aim is
to provide a nonlinear extension of the Principal Component
Analysis (PCA) in order to construct a low-dimensional
embedding for a given set of M points (X1,...,XM ) in a
high-dimensional space, if such an embedding exists. To
this end, a distance dij between a pair of states (Xi and
Xj) is needed. Based on dij , a pairwise affinity function

can be established such that Wij = Wji ≥ 0, with the heat
kernel being a popular option:

Wij = exp

[
−
(
dij

ε

)2
]
. (1)

Although, for data in <N , an obvious choice for dij is
the standard Euclidean distance, this is not always the best
option. For instance, a weighted Euclidean norm may be
necessary when the different coordinates of a generic point
Xi are characterized by disparate orders of magnitude.
This is indeed the case encountered in many combustion
problems, where data are likely points in concentration
space and major species (i.e. reactants and products) arise
in much higher concentrations compared to minor species
(i.e. radicals). The notion of locality is introduced through
the model parameter ε which defines the width of a small
neighborhood, where the chosen distance d can be assumed
as a good measure of proximity. Based on the symmetric
matrix W = {Wij}, a diagonal matrix D = {Dii} can
be defined such that: Dii =

∑M
k=1Wik. Following the

DMAPs approach, if the initial data points are located
on a low dimensional manifold with dimension k, a gap
appears between k nontrivial eigenvalues of the Markov
matrix K = D−1W and the remaining ones. Moreover, the
components in the corresponding k eigenvectors establish a
projection of the high-dimensional points (X1,...,XM ) into
a k-dimensional space.

III. APPLICATION TO COMBUSTION

We will demonstrate the feasibility of constructing re-
duced kinetics models for combustion applications, by ex-
tracting the slow dynamics on a manifold globally parame-
terized by diffusion maps. To this end, preliminary results
are shown for a homogeneous reactive mixture of hydrogen
and air at stoichiometric proportions under fixed total en-
thalpy (H = 300[kJ/kg]) and pressure (P = 1[bar]). Time
evolution of the chemical species follows the Li mechanism
[4], and can be generally formulated as follows:

d~y

dt
= ~f (~y) , (2)



with ~y representing the state in terms of mass fractions
of the nine participating chemical components (H2, N2,
H , O, OH , O2, H2O, HO2, H2O2). Equations (2) are
further complemented by an implicit algebraic equation for
temperature, stipulating the constancy of total enthalpy.

The first step of the proposed method requires the iden-
tification of the low-dimensional attracting manifold. While
many possible constructions have been suggested in the
literature (see, e.g., [5], [6], [7], [8]) here, in the spirit of
the equation free framework [9], [10], we assume that only
the rates ~f(~y) are accessible and do not rely upon any prior
knowledge about a good parameterization of the manifold.

For data collection, Eqs. (2) are integrated starting from
a rich enough set of random states within the admissible
phase-space (convex polytope defined by elemental conser-
vation constraints and concentration positivity) and, after
sufficient time to approach a neighborhood of the manifold,
samples are collected from each trajectory. As a result, a
set of points {Xi, i = 1, ...,M} in <N (hopefully dense
enough within the region of interest) becomes available for
defining the manifold.

As a second step, the diffusion maps approach is per-
formed as outlined in Section II. Due to a disparity of
the magnitudes of species concentrations, dij is taken as
the Euclidean distance between properly rescaled points X̃i

and X̃j , with X̃i = RXi using the fixed diagonal matrix
R = {Rkk}, Rkk = 1/max(X(k)). Here, max(X(k))
represents the largest k-th coordinate among all sample
points, whereas the parameter ε in (1) can be chosen as a
multiple of the quantity: maxj mini6=j dij [11], [12], [13].
An example is shown in Fig. 1. Finally, as a third step,
following [13], [14], the reduced model of (2) can be
constructed as follows:

d~L

dt
=
∂ ~ψ
(
~ψ−1

(
~L
))

∂~y
~f
(
~ψ−1

(
~L
))

, (3)

where ~L denotes the reduced state, while ~ψ and ~ψ−1 repre-
sent the restriction and lifting operators. Clearly, obtaining
these operators, for example through Nyström extension
[15] and various interpolation approaches, is a crucial step
in our model reduction method.

IV. CONCLUSION

In this work, we provide evidence that the diffusion
maps technique is a useful tool for systematically extracting
a global parameterization of low-dimensional manifolds
arising in combustion problems, while less stiff reduced
systems can be expressed in terms of the slow variables
parametrizing these manifolds as identified by the process.
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Fig. 1. Homogeneous reactive mixture of hydrogen and air at stoichio-
metric proportions with fixed enthalpy (H = 300[kJ/kg]) and pressure
(P = 1[bar]). Two dimensional DMAPs parameterization of 1095 points
as provided by the two nontrivial leading eigenvectors φ1 and φ2 of the
Markov matrix K. Colors represent mass fractions, while black filled circle
and black diamond represent the fresh mixture condition and equilibrium
state, respectively.
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Abstract— The comparison of solutions of the shock-ignition
of a hydrogen bubble in air using detailed and reduced
chemical mechanisms is presented. The reduced chemical
kinetics mechanism with 9 species and 12 irreversible reactions
is obtained using the G-Scheme. The test shows that the
simulation becomes computationally more expensive using the
reduced mechanism.

I. INTRODUCTION

Detailed and reliable numerical simulations of compress-
ible reactive flows are particularly challenging because of
their strong multiscale characteristics. Chemical, diffusive
and viscous phenomena occur on molecular scales. Thus,
spatial scales span five orders of magnitude for the simula-
tion of a device having the size of the order of centimeters.

In this work we use the parallel Wavelet Adaptive
Multiscale Representation (pWAMR) method [1], [2] for
controlling the grid adaptivity based on magnitudes of
wavelet amplitudes. The amplitude of the wavelet transform
provides a direct measure of the local error at each asso-
ciated collocation point. Applying a threshold and omitting
those points with small amplitudes, a dynamically adaptive
sparse grid is generated.

The numbers of species and reactions included in a chem-
ical mechanism are other factors that lead to an increase
in computational cost. The use of a reduced mechanism
can help in reducing the computational cost at the sacrifice
of introducing a small inaccuracy in the solution. We
use a reduction method based on the G-Scheme [3]. The
methodology proposed [4] identifies the most important
reactions in the process using an objective index.

We perform the numerical simulation of a shock impact-
ing a hydrogen bubble.

II. TEST CASE DESCRIPTION

The pWAMR method is used to solve the same problem
proposed by Billet et al. [6]. The domain is two-dimensional
with height of 0.75 cm and length of 5 cm. The ambient
gas is air, represented by a 78N2 : 22O2 mixture in mole
fraction. A hydrogen bubble of radius r0 = 0.28 cm is
centered at x = 0.8 cm. A Mach 2 shock is located at x =
0.4656 cm. The unshocked gas has a uniform pressure of 1
atm and temperature of 1000 K. The post-shock state has a
pressure of 4.41 atm, temperature of 1559 K, and velocity

of 798 m/s. The left boundary is a supersonic inflow with
the post-shock conditions prescribed, and top and bottom
boundaries are symmetry planes.

The problem is modeled using the reactive Navier-Stokes
equations for a multicomponent gas mixture. It includes
the evolution equations for species’ partial density. The
production rate for the species for the kinetic mechanism
considered is evaluated using Chemkin. The constitutive
relations include detailed multi-component diffusion, Sorét
and Dufour effects and state dependent transport properties.
The pWAMR method is implemented as a method of lines
algorithm. Here we use a standard 4th/5th-order Runge-
Kutta-Fehlberg scheme to integrate the equations.

III. G-Scheme REDUCTION METHOD

A separate analysis using the G-Scheme is performed
to obtain the reduced chemical kinetics mechanism. The
ODEs representing just the chemical reactions constitute a
multi-scale system. The G-Scheme is a time accurate com-
putational tool that exploits, adaptively, opportunities for
reduction of a multi-scale system in order to integrate only
a non-stiff subset of equations. The space is decomposed
in 4 subspaces according to the time scale of each mode:
the active subspace A contains all the active scales, the
subspaces H has all scales slower than the active ones,
while faster scales are in the subspaces T, and the invariant
subspace E contains the invariant modes. Only the active
subspace is numerically integrated using a time step of
the order of the time scale of the fastest mode in this
subspace. The contributions of the slow and fast subspaces
are evaluated using a asymptotic approximations.

The standard CSP Participation Index [5] provides a non-
dimensional measure of the contribution of the k-th reaction
to the i-th mode at the state x. In the G-Scheme we modify it
to define the Participation Index of the k-th reaction relative
to the dynamics of the subspace1 s:

P̂s
k(x) =

∑Ns,e

i=Ns,b
Ci

k(x)r
k(x)∑Ns,e

i=Ns,b

∑R
k′=1 |Ci

k′(x)rk
′(x)|

, (1)

1The index s = h/a/t identifies one of the four subspaces as follows:
h for H, a for A, and t for T.



where Ci
k = bi(x) ·Sk, bi is the contravariant basis vector,

and Sk the stoichiometric vector. Note that 0 < P i
k(x) < 1.

The CSP Participation Index provides a non-dimensional
measure of the contribution of the the k-th reaction to the
i-th mode at the state x normalized by the contribution of all
reactions at the state x. In contrast, equation (1) provides
a measure of the contribution of the k-th reaction to the
subspace s normalized by the contribution of all reactions
in the same subspace. In other words, it provides a criterium
to identify if the k-th reaction is active, slow, fast, or as
negligible if it doesn’t have a relevant value in any subspace.
The concept of an important reaction is not an inherent
property of the reaction but a function of the local state.

We can rank the reactions according to the maximum
value of P̂s

k in the time interval considered as follows:

P
s

k = max
tb<t<te

(
|P̂s

k(x)|
)
. (2)

Equation (2) provides a value that summarizes all the
information given by (1). By identifying the maximum
value of the participation index calculated for any reaction
along the process, we obtain an objective measure of the
importance of the reaction for the analyzed problem.

Based on (2), we can create a very simple iterative
procedure to obtain a simplified mechanism that satisfies
an objective criteria defined by the analyst. In this study we
choose the error in the equilibrium temperature and ignition
time as criteria, defined as:

errT =
Tf,s − Tf,c

Tf,c
and errt =

te,s − te,c
te,c

, (3)

where Tf,s and Tf,c are the equilibrium temperatures for
the simplified and complete mechanism respectively, while
te,s and te,c are the ignition times for the simplified and
complete mechanism respectively. Then the algorithm finds
iteratively the threshold value of ParticipationIndex giving
the smallest mechanism that satisfies a user-defined value
for these error criteria. In this study we have used errT =
errt = 0.02.

The simplified mechanism found contains 16 irreversible
reactions. In comparing it with the full mechanism, it yields
a maximum error of 1.76% for the equilibrium temperature
and 1.27% for the ignition time in the range of initial tem-
perature, pressure and mixture ratio of Ti = 700−1500 K,
pi = 0.5− 100 atm, and φ = 0.5− 2.

IV. RESULTS

We perform the numerical simulation of a shock im-
pacting a hydrogen bubble. Since the bubble is less dense
than the surrounding air, large bubble distortions result and
reactions start on the deformed bubble surface.

The mechanisms used for the test both have 9 species;
the detailed one includes 19 reversible elementary reactions
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Fig. 1. Comparison of the umber of grid point required for the simulation
using the complete and the reduced mechanism.

while the reduced one 16 irreversible reactions. The solu-
tions obtained in both cases are very accurate and do not
show any sensible difference.

Most interestingly, Fig. 1 shows that the number of grid
points used in the simulation with the reduced mechanism
is larger than in the one with the detailed mechanism. The
average number of grid points with the detailed mechanism
is 164,369, while it increases to 182,635 when using the
reduced mechanism.

The test shows that the simulation becomes computation-
ally more expensive using the reduced mechanism. For a
small mechanism, like hydrogen/air with 9 species, it is
not possible to reduce the number of species without intro-
ducing a relatively large error. The present computational
study shows that just a reduction in the number of reactions
does not necessarily produce a significant saving in the
computational cost.

We observe that a larger number of points at the finest
scale is necessary to solve the problem with the same
accuracy. We note that the finest resolution required by
the solutions is below 1 µm for both detailed and reduced
mechanisms. An explanation of this increase based on
analysis of the solution, with particular attention to the
species involved in the deleted reactions, will be discussed.
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Abstract— The Relaxation Redistribution Method (RRM) is
based on the notion of slow invariant manifold (SIM) and
is applied for constructing a simplified model of detailed
multiscale combustion phenomena. The RRM procedure can
be regarded as an efficient and stable scheme for solving the
film equation of dynamics, where a discrete set of points
is gradually relaxed towards the slow invariant manifold
(SIM). Here, the global realization of the RRM algorithm
is briefly reviewed and used for auto-ignition and adiabatic
premixed laminar flame of a homogeneous hydrogen-air ideal
gas mixture.

I. INTRODUCTION

The detailed reaction mechanisms of practical fuels
contain hundreds of species participating in hundreds to
thousands of elementary chemical reactions. In addition to
the large number of variables that need to be accounted
for, disparate time scales introduce stiffness and increase
the computational cost of numerical computations. On the
other hand, time scales associated with transport phenomena
cover a narrower range of typically slower time scales.
When the coupling of flow phenomena and chemical ki-
netics is of interest, changes due to the fastest time scales
can be assumed to be equilibrated. Model reduction can then
be employed to reduce the computational cost by extracting
only the important slow system dynamics [1], [2], [3].

The Relaxation Redistribution Method (RRM) was re-
cently proposed as an efficient technique to construct low
dimensional manifolds of any dimensions [4]. RRM consists
of an algorithm for refining an initial guess (initial grid) till
convergence within a neighborhood of the SIM is achieved,
by mimicking the film equation of dynamics. Here, the
initial manifold is immersed into a phase space and the
motion of trajectories along the manifold is subtracted
from the whole dynamics by a simple redistribution of the
grid points in the reduced space. Moreover, in its local
realization, stability of the RRM refinements provide a
natural criterion for finding the minimal dimension of a
reduced model [4].

Here, the global realization of RRM is shortly reviewed
and applied for homogeneous auto-ignition and a laminar
premixed hydrogen flame.

II. FILM EQUATION OF DYNAMICS AND RRM
The detailed (microscopic) dynamics of an autonomous

system in terms of the state N(t) in a phase space S (say
ns-dimensional) is given by,

dN
dt

= f(N). (1)

A subspace U ⊂ S is a positively invariant manifold for
the system (1) if every trajectory starting on U at time t0
remains on U for any t > t0. Therefore, N(t0) ⊂ U implies
N(t) ⊂ U for t > t0.

The components of the state vector typically evolve at
different time scales. Because of such time scale disparity,
the trajectories of (1) starting from arbitrary initial condi-
tions are typically quickly attracted to a lower dimensional
manifold, where motions continue at a slower rate towards
the steady state (or equilibrium Neq with f(Neq) = 0). This
positively invariant manifold is the slow invariant manifold,
(SIM), and its construction can be based on the definition
of fast and slow sub-spaces within S [3].

Accordingly, neglecting the initial fast evolution of the
detailed system, the long-time dynamics can be described
by a smaller number of macroscopic variables, which are to
be used to uniquely parametrize the SIM. The macroscopic
variables ξ belong to the nd-dimensional space Ξ, with
nd < ns, and offer a possible representation for a coarse
description of (1). In other words, for an arbitrary state
NSIM located on the low-dimensional manifold, we can
write W = NSIM (ξ), where W is a (1− 1) map from the
parameter space Ξ into the phase-space S.

The evolution rate of the state N, f(N), can be decom-
posed into a component along the tangent space of W , TW ,
and its complement in a transversal direction,

f(N(ξ)) = f(N(ξ))‖TW
+ f(N(ξ))⊥TW

, (2)

The components are defined as

f(N(ξ))‖TW
= Pf(N(ξ)) (3)

f(N(ξ))⊥TW
= ∆ = (I− P)f(N(ξ)). (4)

∆ is the defect of invariance where I and P are ns × ns

identity matrix and projector operator, respectively.



Fig. 1. Relaxation and Redistribution algorithm; The effect of slow
motions is neutralized via redistribution.

By definition, W is a positively invariant manifold if
the state does not leave it during the subsequent system
evolution. Hence, relaxation will happen only along the
tangent space and the normal component should be zero,

∆ = 0 ξ ∈ Ξ. (5)

Equation (5) is the differential equation which is known
as invariance condition [3]. In the Method of Invariant
Manifold (MIM), the slow invariant manifold is the stable
solution of the film extension of dynamics, dN(ξ)

dt = ∆.
This is the evolutionary equation guiding an initial mapping
N(ξ) towards NSIM (ξ). A detailed explanation of MIM
algorithm and the choice of the projector P can be found
in [5], [6].

The states located on an initial grid relax according to
(1) with f(Nini(ξ)). After some time, all grid points move
towards the SIM and the volume of the initial manifold
shrinks due to the concurrent action of slow motions. In the
RRM though, the latter effect is neutralized by redistributing
the points of the relaxed grid after each time step [4]. As
sketched in Fig. 1, relaxed grid (open circles) are located
at different positions on the slow space Ξ with respect
to their initial positions (black circles). Clearly, even after
a short relaxation the density of the grid points tends to
increase near the equilibrium, with a drastic change of the
grid spacing in Ξ. To prevent this, a redistribution step is
applied to bring the grid points back to their previous ξ
values. Such a step requires interpolation between the inner
relaxed states and extrapolation for boundary grid points.
The converged solution is the manifold containing all the
states for which further relaxations move the states only
along the manifold. In order to keep the computational effort
low, here we focus on manifolds with a dimension up to
three. We should however remind that low dimensional SIM
are usually appropriate within some neighborhood of the
phase space around the equilibrium point, leaving open the
problem of how to extend it further to cover the states all
the way to the fresh mixture condition [7].

On the other hand, in the original RRM method, extrapo-
lations during the redistribution step at the SIM boundaries

may sometimes result in physically meaningless values for
compositions (e.g. negative concentrations). In this work, to
prevent such a problem, we suggest a possible approximate
solution as follows. Global 2D or 3D initial manifolds
are constructed (see RCCE construction below) and their
boundaries subsequently fixed during the refinement pro-
cess. In other words, the RRM is applied just on the interior
grid points till convergence. Based on our experience, the
resulting manifold practically coincides with the SIM for
the part of the phase space for which low dimensional SIM
exists, whereas it provides with a convenient extension for
regions far from equilibrium.

III. RESULTS

The global RRM method is applied to homogeneous
H2/air mixtures. The detailed kinetics scheme includes ns =
9 species and 21 reactions [8]. The popular Rate-Controlled
Constrained-Equilibrium (RCCE) linear constraints (see
e.g. [9]) are used for manifold parameterization, such as
the total number of moles (ξ1), moles of active valences
(ξ2) and moles of free oxygen (ξ3).

The initial mole numbers of the species are given based
on stoichiometric values, NH2 = 1.0, NO2 = 0.5 and
NN2 = 1.881. The rest of the species are assigned
chemically insignificant positive initial values to ensure a
strictly positive composition [10]. The initial guess for the
manifold (initial grid) is constructed on Ξ as much extent
as possible to contain both projected locations of initial
and equilibrium points. The initialization is done based
on constrained minimization of thermodynamic potentials
utilizing the CEQ FORTRAN package library [11].

The grid points which are located on the boundaries are
fixed and global RRM procedure applied for interior grid.
The SHEPPACK FORTRAN package is used for interpo-
lation [12]. The RCCE and RRM manifold are shown in
Fig. 2 while the sample trajectory is plotted for comparison.
The temporal evolution of the temperature and species mass
fractions are presented in Fig. 3. Good agreement is found
with the detailed description for the temperature and major
reactants as well as the radicals in large concentration.
Far away from equilibrium, the RCCE manifold results in
strongly underpredicted HO2 and H2O2 concentrations.

At the Workshop, results will be presented for the test
case of a laminar premixed hydrogen flame.

IV. CONCLUSION

An algorithm for constructing the globally generated
manifold is proposed based on the relaxation and redistribu-
tion method. The accuracy of the method has been assessed
through the auto-ignition and laminar premixed flame of
homogeneous H2/air from the initial mixture far from
equilibrium. The proposed method shows the improvements
for ignition delay and capturing the radicals with respect to
the popular low dimensional RCCE method.
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Abstract— Algorithmic criteria for the applicability of the
Quasi Steady State and Partial Equilibrium approximations
are presented and verified in the context of the hydrogen/air
auto-ignition.

I. INTRODUCTION

The classical approach in model reduction involves the
introduction of the Quasi Steady State (QSSA) and the
Partial Equilibrium (PEA) approximations. Although both
approximations have been devised and used for quite a
long time, it was only until very recently when their
applicability and connection was thorough investigated in
[1] in the context of the CSP method [2]. Here, the criteria
established in [1] for the applicability of QSSA and PEA
are presented in a new form and are validated in the case
of the Hydrogen/Air autoignition.

II. STATEMENT OF THE PROBLEM

The evolution of a homogeneous ideal gas mixture where
K reversible reactions occur simultaneously among N
reacting chemical species obeys the (N + 1)-dim. system
of autonomous ODEs:

d

dt

[
y
T

]
=

[
S

Q(y, T )

]
R(y, T ) ≡ g(y, T ) (1)

where y,g ∈ RN and y contains the variables relating to
the N species (e.g., mass fractions), T is the temperature,
R ∈ RK contains the reaction rates, S ∈ RN×K is the
constant stoichiometric matrix and Q ∈ R1×K is a row
vector depending on the thermodynamic properties of the
mixture. We assume that a (N + 1 − M)-dim. normally
hyperbolic slow invariant manifold Ω ⊂ RN+1 develops
in phase space as the result of the exhaustion of M fast
dissipative time scales τi, (i = 1, . . . ,M).

Casting (1) in CSP form yields:

d

dt

[
y
T

]
= ar(y, T )fr(y, T ) + as(y, T )fs(y, T ) (2)

where the M basis vectors in ar and the (N+1−M) basis
vectors in as span the fast and slow subspaces of the tangent
space at the point y ∈ Ω and fr, fs are the corresponding

fast and slow amplitudes in these subspaces. Moreover,
Eq. (1) simplifies to the differential-algebraic system:

fr(y, T ) ≈ 0
d

dt

[
y
T

]
≈ as(y, T )fs(y, T ) (3)

where the symbol “≈” is indicative of the accuracy by
which the fast and slow subspaces are spanned by the basis
vectors in ar and as. Starting from an initial guess, a0r and
a0s, CSP provides refined fast and slow basis vectors that
produce stable (i.e., non stiff) and of increasing accuracy
reduced models.

III. CRITERIA FOR VALID QSSA AND PEA

In order to produce a reduced model for Eq. (1) on the
basis of QSSA or PEA, M fast variables, say yr, and M fast
reactions, say Rr, must be selected. Under such a choice
it was shown in [1] that QSSA and PEA produce specific
approximations of the fast and slow subspaces of Ω and
that QSSA is a limiting case of PEA. This formulation
enables for comparison with the CSP basis vectors and the
introduction of the following criteria for the applicability of
QSSA and PEA:

A. Stability

The criterion that guarantees stability of the reduced
model constructed with QSSA or PEA can be expressed
as: [

Dnr (f̃s)
]

[Dnr (gr)]
−1

= O(ε) (4)

where, ε denotes the fast/slow time scale gap, Dnr
[•]

denotes the directional derivate along the axis of the fast
variables, f̃s are the slow amplitudes of the QSSA/PEA
reduced model and gr is the part of the vector field g that
corresponds to yr.

B. Accuracy

The criterion that guarantees leading-order accuracy of
the reduced model constructed by the PEA can be expressed
as:

[Dnr
(gr)]

−1
[Dãs

(gr)] = O(ε) (5)

where Dãs
[•] denotes the directional derivate along the

PEA slow basis vectors ãs = [−Vr
s, Iss]

T , where Vr
s =
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Fig. 1. Top: the evolution of the species mass fractions and of the
temperature. Bottom: the evolution of the time scales.

(
∂Rr

∂yr

)−1 (
∂Rr

∂ys

)
, Iss is the (N +1−M)× (N +1−M)-

dim. identity matrix and ys represents the N + 1 − M
variables in y that do not belong in yr [1]. Moreover, if:

Vr
s = O(ε) (6)

the PEA reduces to the QSSA, so that the QSSA provides
leading-order accuracy as well.

IV. HYDROGEN-AIR AUTO-IGNITION

To examine the validity of the above criteria, the auto-
ignition of a homogeneous hydrogen-air mixture under
constant volume is considered [3]. The chemical kinetic
mechanism consists of 21 reversible reactions among 8
reacting and one inert (nitrogen) species [4]. Considering
a stoichiometric mixture (φ = 1) with initial temperature
T0 = 1100K and pressure P0 = 2.0 bar, Fig. 1 displays
the corresponding evolution of the species mass fraction,
temperature and time scales.

Before the ignition of the mixture, the two fastest time
scales are dissipative followed by an explosive one. The
time scale gap between the fast dissipative time scales and
the explosive one is ε = O(0.10). CSP analysis identifies
OH and O as the fast variables for the two fast CSP modes
and H2 + OH ↔ H2O + H and H2 + O ↔ OH + H
as the two fast reactions, respectively. This information is
sufficient for calculating the quantities in Eqs. (4), (5) and
(6) presented in Fig. 2. It is demonstrated that Eqs. (4) and
(6) hold but Eq. (5) fails. This implies that the QSSA/PEA
reduced models will not provide leading-order accuracy,
which is verified by the computed relative errors shown in
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Fig. 3. Note, that both reduced models produce the same
relative errors due to the negligible value of Vr

s .
At the Workshop a detailed analysis and validation of the

criteria for the validity of QSSA/PEA will be presented.
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Abstract— Many applications and analysis techniques in
science and engineering use simulation as a means for gauging
a system’s behavior. In coarse designs, simulation provides a
qualitative look at system attributes. Much denser simulation
might be required for more quantitative assessments. However,
in advanced simulation techniques with complex models, each
simulation can take hours or days. Processes with many
variables require many simulation runs to adequately cover
the space of responses. In this case, even if each simulation
only takes a few minutes, the total simulation time can grow
exponentially.

Surrogate modeling is the technique of creating an algebraic
approximation to the simulation’s map from parameters to
response. The resulting response surface or surrogate model is
much more efficient to evaluate than the original simulation
and can provide much insight into the behavior of the original
system [7]. The best form for a surrogate model depends on
the application. They are formed with various methods such
as standard regression, support vector machines [12], and
kriging methods [8]. Data Collaboration techniques [3] use
quadratic and rational-quadratic surrogate models to calculate
outer bounds to various optimization objectives such as the
consistency measures and response prediction.

One of the major problems facing surrogate modeling
occurs when long simulation time is required to adequately
sample the model response. To fit a surrogate model, many
simulation runs are often required. The number of simulations
can depend on the form of the surrogate (e.g., the number of
basis functions) and the dimension of the parameter vector.
For example, with a quadratic surrogate, the number of basis
functions (monomials with a degree of at most 2) increases
quadratically with the number of parameters.

This talk describes a technique for discovering the possible
dependence of the response to a lower-dimensional active
subspace of the parameters. If such an active subspace were
known, the amount of simulation required to make a surrogate
would depend on the subspace dimension rather than the
original full dimension. The procedure determines if the
gradient of the function is confined to a subspace, from which
the active subspace can be identified.

Subspace dependence is not a new concept. However,
the focus of many studies is on searching for a subspace
dependence of the multivariate output of a function or of
the evolving state vector of a set of coupled ODEs [1], [5],
[6]. Some works use local subspace dependence to preserve
neighborhood relationships and fit low-dimensional nonlinear
manifolds to the data [2], [4], [11]. High-dimensional model
representations (HDMRs, [9], [10]) build up a surrogate model
by iteratively fitting along every coordinate-aligned subspace
starting with the 0-dimensional subspace.

The talk will outline the procedure and derivation, and

a simple complexity analysis. We illustrate the method’s
behavior on a wide variety of problems, including hydrogen
and methane combustion models.
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Abstract—Methods for doing global sensitivity analysis with 
small sample sizes are discussed.  Two changes are made to 
our previous algorithm.  Rather than an HDMR expansion, we 
use a full polynomial response surface, but limit the number of 
interaction terms we include.  This reduces the sample size by 
approximately a factor of five. Further reductions are 
obtained by using sparse regression techniques to find the 
regression coefficients, particularly the sparse group lasso. 

 INTRODUCTION I.
Chemical kinetic models of combustion processes consist 

of hundreds or thousands of reactions describing the 
chemistry of dozens to hundreds of chemical species [1]. 
Even for the most studied chemical reactions the rate 
coefficients are not known with a great deal of precision, 
and in many cases most of the rate coefficients are estimated 
[2].  The well-known uncertainty of rate coefficients has led 
to extensive use of sensitivity analysis. Traditionally 
sensitivity analysis has been carried out in a local and linear 
fashion, generated from information near the estimated rate 
coefficient [3].  If the rate coefficient is sufficiently different 
from the nominal value the local sensitivity may be an 
inaccurate estimation of the role of the uncertainty of the 
rate coefficient in the uncertainty of the target. Global 
sensitivity analysis ([4] and [5]) samples the full range of 
uncertainty of all the reactions at once, so that nonlinearities 
and correlations may be described. 

We present here work [6] on using the sparsity of the 
sensitivity indices to significantly reduce the sample size 
needed to get a ranking of the sensitivity of reactions in a 
chemical model.  Using sparse techniques, the sample sizes 
can be much smaller than the number of reactions and thus 
can require less computational effort than linear one-at-a-
time methods that are often used for ignition delays. 

 RESULTS AND DISCUSSION II.
In order to used sparse regression techniques, the 

response surface for the ignition target studied here is 
written in a form [6] that differs from the HDMR expansion 
we typically have used (for example, Ref. 7): 

τ (1) ({ui}) =  aikui
k

k=0

n

∑
i=1

m

∑
   (1a) 

τ (2) ({ui}) =  aikui
k

k=1

n

∑
i=1

m

∑ +  b jkruv(j,1)
k uv(j,2)

r

k+r≤s
k,r > 0

∑
s=1

n-1

∑
j=1

p

∑
,
(1b) 

 

where m refers to the number of reactions and n refers to the 
order of the expansion.  It is straightforward to generate 
sensitivity indices (Si’s) using expansions like those in Eq. 
(1a) [6].   Equation (1b) uses the information from the fit in 
Eq (1a):  p is a number determined from the expansion in 
Eq. (1a).   Only reactions in Eq. (1a) whose sensitivity 
indices are above a threshold are used in the second set of 
terms in Eq. (1b).  The value of p is generally less than 200 
in our calculations. We typically use thresholds of Si = 0.005 
or Si = 0.01. The indices “v(j,1)” and “v(j,2)” in Eq. (1b) 
refer to a pair of reactions that are used in the interaction 
term based on their Si’s. It is straightforward to use Eq. (1a) 
to extract Si’s.  Extraction of Si’s from Eq. (1b) requires 
integration, done analytically for the polynomial expansions.  
 Results for butanol ignition are presented in the 
middle panel of Fig. 1, generated using the expansions in 
Eqs. (1a) and (1b).  Comparison of this plot and the one 
above it demonstrates that good results can be obtained with 
the expansion in Eqs. (1a) and (1b) with much smaller 
sample sizes.  The sample size of 7,000 used for Eqs. (1a) 
and (1b) is a significant improvement over the previous 
sample size of 50,000 (top panel of Fig. 1).   We have used 
an HDMR expansion in many studies and found that 
convergence was achieved much more rapidly for the large 
Si’s than for small Si’s. The slowness of the convergence is a 
manifestation of a phenomenon called “overfitting” [8], 
which is alleviated to a significant extent by the expansion 
in Eqs. (1a) and (1b). The reduction of effort is achieved 
using ordinary least squares regression for the fits in Eqs. 
(1a) and (1b).  Even further reductions can be found by 
starting from Eqs. (1a) and (1b) and taking into account the 
sparseness of the results - most sensitivity coefficients are 
very small.  The additional reduction is achieved by using 
sparse regression techniques [8].  

 The savings from sparse regression results from the 
fact that typically the uncertainty of only a few reactions 
contribute significantly to the uncertainty in a given target.  
The sparse regression techniques take advantage of this 
without any prior knowledge about which reactions 
contribute.  This is accomplished by adding a “penalty” term 
to the usual error function for least squares fits: 
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where tk refers to the ignition delay time for the kth sample 
run.  The specific algorithm we use is described in the 
upcoming paper [6].  

 The expansion described in Eq. (2) is referred to as 
the LASSO [8].  The penalty term serves two purposes, it 

“regularizes” the solution, reducing overfitting, but more 
importantly, for our purposes, it selects coefficients, 
resulting in many coefficients that are zero for specific 
values of λ.  There are a number of ways of picking good 
values of λ [8], and typically we use cross-validation or an 
empirical rule we discerned from a number of applications.  
Equation (2) is a simplification of the procedure used in Ref. 
[6], the sparse group lasso [9], which recognizes the 
grouping of expansion coefficients based on individual 
reactions.  There is an additional adjustable parameter, α, set 
to 0.5 here (it can range from 0.0 to 1.0). 

The results of applying the previously described 
algorithm is presented in the bottom panel of Fig. 1, which 
demonstrates that we can obtain good agreement between 
ordinary least squares and sparse techniques, with much 
smaller sample sizes.  Figure 2 has a detailed comparison for 
all sensitivity coefficients greater than 0.01 (1% of the 
variance).  The comparisons are made for three sample sizes 
in the sparse case: 400, 800, and 1200.  Numbers in red 
indicate the reactions than are mis-ordered and it can be 
observed that this only occurs for a single pair which have 
very close sensitivity coefficients in the much larger 
ordinary least squares calculation (7000 samples). 
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Fig. 1. The top and middle panels show results for 
butanol ignition with the old algorithm and new 
algorithm, respectively.  The bottom panel shows 
a calculation using sparse regression. 

 
Fig. 2. Reaction Selection for n-Butanol ignition is shown. 
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A bifurcation analysis was employed to construct a compact 
kinetic model to predict limit flame phenomena in steady state 
perfectly stirred reactors (PSR), including ignition, extinction 
and onset of flame instabilities. The method is demonstrated 
with dimethyl ether (DME)/air mixtures that involve the 
negative temperature coefficient (NTC) chemistry and thus 
showing cool flames in PSR. A Bifurcation Index (BI) is 
defined to quantify the contribution of each reaction to the 
limit phenomena. Reactions with large BI are selected and 
tuned to obtain a kinetic model that can accurately reproduce 
the bifurcation states obtained by the full mechanism. 

I. INTRODUCTION 
Limit flame phenomena, such as ignition, extinction and 

onset of flame instabilities are important for combustion 
applications. In a steady state system, ignition and 
extinction were typically believed to be associated with the 
turning points on the S-curves [1]. Such limit phenomena are 
induced by the competition between finite rate chemistry 
and the mixing processes. Therefore, accurate prediction of 
the limit phenomena requires realistic chemistry that is 
typically nonlinear, stiff and large, and thus computational 
expensive [2]. In the present study, a method based on 
bifurcation analysis was developed to construct efficient 
kinetic models that can accurately mimic the detailed 
mechanisms to predict limit flame phenomena.  

A turning point on canonical S-curves is associated with 
a singular Jacobian matrix [3], where changes in flame 
stability can occur. However, with detailed chemical 
kinetics, such as that of dimethyl ether (DME), the S-curve 
can be complex and involve multiple criticalities [4]. 
Furthermore, it was found using flame stability analysis that 
extinction of DME/air flames in steady state PSR may 
occur prior to reaching the turning points primarily due to 
the competition between different reaction pathways [5]. In 
such cases flame stability analysis is needed to rigorously 
detect the limit phenomena rather than simply depending on 
the turning points on the S-curves. In a recent study on 
chemical explosive mode analysis (CEMA) [6], it was 
further shown that the limit phenomena in PSR is primarily 
induced by the competition between chemical explosive 
modes (CEM) and the mixing processes. As such, the 
species and reactions controlling the CEM can be similar to 
those controlling the limit phenomena.  

In the present study, the controlling reactions for the 
limit phenomena are identified using a bifurcation index, 
defined in analogous to the participation index (BI) in 
computational singular perturbation (CSP) [7] and CEMA. 
Important reactions are selected based on their BI values to 
form a compact skeletal mechanism. The A-factors of 
reaction with large BI values are tuned to obtain S-curves 
that are mostly identical to those by the detailed 
mechanism.  

II. METHODOLOGY 
The governing equations of a homogeneous combustion 

system, e.g. an unsteady PSR, can be represented by a set of 
ordinary differential equation (ODE): 

)()()( ysyωygy +==
dt
d

,  (1) 

where y is the vector of dependent variables, ω is the 
chemical source term, and s is the mixing term. The time 
evolution of a small perturbation, δy, induced to the steady 
state solution can be approximated with the following linear 
ODE:  

yJy
g δδ ⋅≈

dt
d

, 0yy δδ =  at t = 0,    (2) 

where Jg is the Jacobian evaluated with the steady state 
solution ys. Note that Jg consists of two components, which 
are attributed to the chemical source term and the mixing 
term, respectively. 
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The eigenvalue λ1 of Jg with the largest real part determines 
the absolute stability of the system, and a bifurcation point 
with Re(λ1) = 0 separates a stable branch from an unstable 
branch on the S-curve, where “Re()” denotes the real part of 
a complex number. Note that, the Jacobian Jg is singular at 
the turning points of an S-curve, i.e. λi = 0. The turning 
points nevertheless may not necessarily indicate changes in 
flame stability if ≠ 1. In such cases, ignition and 
extinction of the system may occur at Hopf bifurcation 
points located away from the turning points [5].  



At a bifurcation point, where Re(λ1) = 0, the eigenvalue 
can be decomposed as 
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where Jr is the contribution of the rth reaction to the 
chemical Jacobian, I is the total number of reactions, and b1 
and a1 are the left and right eigenvectors of Jg, respectively, 
associated with λ1. The bifurcation index (BI) of the rth 
reaction is defined as 

( )
( )

1,1
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λReBI

+=

=
Irr

rr .  (5) 

The value of BI  therefore indicates the normalized 
contribution from the rth reaction or the mixing process to 
the zero-crossing of Re(λ1) at a bifurcation point.  

III. RESULTS 
Fig. 1 shows the temperature profile, i.e. the S-curve, for a 

rich DME/air mixture calculated with a detailed mechanism 
with 55 species and 290 reactions [8]. Three stable branches 
(solid lines), the strong flames branch, the cool flames 
branch, and the no-flame branch, respectively, were 
observed in the top-down order, with E2b

’, E1b
’, I2b, and I1b 

being the extinction of strong flames, extinction of cool 
flames, ignition of strong flames, and ignition of cool 
flames, respectively. 

 
Fig. 1: An S-curve of a rich DME/air in PSR. Solid line: 
Re(λ1)<0, Dashed line: Re(λ1)>0. 

The important reactions for the ignition and extinction 
states shown in Fig. 1 are identified using the BI values 
defined in Eq. (5), as shown in Fig. 2 for the extinction of 
the strong flames at E2b’. A skeletal mechanism was formed 
by selecting the 103 reactions with non-negligible BI values 
(BI > 0.01) from the detailed mechanism. The A-factors of a 
small group of reactions with large BI values at all the six 
bifurcation points in Fig. 1 are tuned such that the 
bifurcation points predicted by the tuned mechanism almost 

exactly match those predicted by the detailed mechanism as 
shown in Fig. 3.   

 
Fig. 2: Reactions with large BI values at strong flames 
extinction state, E2b’. 

 
Fig. 3: The S-curves predicted by detailed, skeletal and 
tuned mechanisms for DME/air, respectively. 
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I. INTRODUCTION

The development in computational fluid dynamics and
turbulence chemistry interaction modeling in recent years
allows for the usage of detailed chemical information for
the analyses and optimization of combustion devices. The
latest development shows a trend in engineering to replace
single component with multi-component reference fuels.
This causes reaction mechanisms of increasing sizes, and
thereby an increasing demand in mechanism reduction or
tabulation techniques.

Mechanism reduction can be performed through lumping,
species removal, and quasi steady state or partial equilib-
rium assumptions. Species removal is frequently performed
through directed relation graphs. In [1] we introduced a
directed relation graph which used fuel molecules, oxidizer
molecules, and sensitive species as seed. Relation graphs
were calculated for each atomic flux in the reduction-
oxidation system. A reaction sensitivity analysis was per-
formed and the relation graph was initialized for each
species by the weighted sensitivity coefficients of all re-
actions in which the species appeared as reactant. The
sensitivity analysis thereby allowed setting targets of the
reduced reaction mechanism. Multistep error propagation
was calculated from an iterative procedure, which resulted
in species weights, which sorted the species according their
necessity to be part of the targeted reduced reaction mech-
anism. We introduced this method as necessity analysis. In
[5] we applied the necessity analysis to develop skeleton
mechanisms for n-heptane for the full temperature regime
and for the high temperature regime only.

Directed relation graph methods cannot reduce mecha-
nisms efficiently which consist of a high number of paral-
lel pathways, with almost equal fluxes. Unfortunately this
feature is found in all oxidation mechanisms for larger
hydrocarbons. Such mechanisms can be efficiently sim-
plified through chemical lumping, which we applied in
[2] as a prestage of the necessity analysis applied in [5].
We introduced a simple rule for the lumping procedure:
species of equal size, with the same distance between the
same functional groups found at the same carbon classes
(primary, secondary, or tertiary carbon) can be lumped.
Concentrations of these species are assumed to be equal.

This rule allowed to apply chemical lumping during the
automated generation of reaction mechanisms [3], [4].

In [1] we assumed that it is necessary to develop reduced
reaction mechanisms over the full range of initial conditions,
and to define the final set of necessary species by all species
with necessity in at least one point of the parameter range.
In [5] we identified critical chemical conditions, which
are representative for the full parameter range. Since then
we apply the method for the critical conditions only, and
verify the mechanism thereafter for the full parameter range.
Chemistry Guided Reduction (CGR) reduces the develop-
ment time needed to find an optimum reduced reaction
mechanism.

Each reaction in a reaction mechanism has a sensitivity
on the performance of the total reaction mechanism. It
is not possible to just add submechanisms for different
fuel molecules without side effects on the performance
of the mechanism for the individual fuel molecules. Each
combination of fuel molecules makes a correction of some
reaction rate coefficients necessary. In mechanism devel-
opment these corrections can be performed through au-
tomated optimization procedures. On the other hand, the
performance of the mechanism will be influenced, if a
submechanism for a unused fuel molecule is removed from
the reaction mechanism. Again automated optimization can
be used to readjust the mechanism. When applying neces-
sity analysis for species removal it is found, that a large
number of species can be removed with almost no change
of the performance of the reaction mechanism. Species
with medium scaled necessity values influence results of
the mechanism, and readjustment is necessary if further
simplification of the reaction mechanism is wanted. In this
presentation we perform CGR for a complex blend of fuel
molecules, and demonstrate the performance of strongly
simplified chemical systems for low and high temperature
combustion.

II. THE DETAILED REACTION MECHANISM

The detailed reaction mechanism consists of 477 species
and 4228 reactions. It consists of two larger alkanes: n-
heptane and iso-octane. Those reaction models are gener-
ated as described in [2] via an semi automatic procedure [4].
The aromatic content is modelled by toluene as described in



[6]. All three submechanisms are based on the same C1-C4
chemistry [7] which was extended by a submechanism for
ethanol oxidation.

Calculations for all fuel molecules (n-heptane, iso-octane,
toluene and ethanol) show good agreement with the exper-
imental values [8].

III. REDUCTION PROCEDURE

1) Horizontal lumping: The technique of horizontal
lumping is applied for the submechanisms for n-heptane
and iso-octane [2]. Lumping reduced the mechanism to a
size of 400 species and 3988 reactions.

2) Species removal based on necessity analysis: To
efficiently remove species with the lowest importance a
series of steps were taken. First a set of different constant
volume reactors and freely propagating flames is calcu-
lated including necessity analysis [1]. The selection of the
reactors follow the ideas from [2]. In a second step the
probability for species removal is weighted by its necessity
value. Species are selected randomly, respectively to their
probability for removal. Finally the accuracy of the model
and the numerical stiffness is controlled. If the targets of the
mechanism are meat the species removal is accepted and the
procedure is repeated. Targets can be species concentrations
or global parameter such as ignition delay time or laminar
flame speed. A skeletal mechanism was generated with 290
species and 3026 reactions. The accuracy of the mechanism
after each species removal is compared to the necessity
value, which demonstrates the performance of the method.

3) Reaction removal based on sensitivity analysis: A fur-
ther reduction can be achieved be removing single reactions.
To identify those reactions a sensitivity analysis towards
various targets such as species, ignition delay time and / or
laminar flame speeds is used. The sensitivy coefficient over
all cases are normalised and a probability to be removed is
assigned to each reaction. This probability density function
is used to efficiently decide which reaction to remove while
keeping a certain randomness.

4) Species removal and reoptimization: The reduction
technique explained before reduced the mechanism to the
smallest set of species and reactions within the given
accuracy limits. Each further reduction leads to a reaction
mechanism which cannot predict the targets of the mech-
anism with the demanded accuarcy. Nevertheless further
reduction is possible when reoptimisation of the Arrhenius
coefficients is applied. We apply a genetic optimisation
algorithm. The final mechanism for the four component
gasoline reference fuel has a size of 205 species and 1460
reactions. The meachnism can be further reduced by the
help of time scale analysis or tabulation techniques.

IV. CONCLUSIONS

The reduction techniques explained above were applied
and the reduced mechanisms is validated against the de-
tailed reaction mechanism. For the laminar flame speed
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Fig. 1. Simulated ignition delay time for n-heptane at stocheometric
conditions. light grey p=3 bar, grey p=27.25 bar, dark grey p=51.5 bar and
black p=100 bar. The rectangles represents the lumped mechanism. The
line represents the skeletal mechanism after species removal.

no deviation was observed for the lumped and skeletal
mechanisms. Fig. 1 shows that the final mechanism predicts
accurately ignition delay times for a wide range of pressures
and temperatures. Such mechanisms can be direct input
to combustion simulation, or input to further mechanism
reduction based on time scale analysis.

All calculations were performed using DARSv2.08.30.
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Abstract— The Gauss–Newton with approximated ten-
sors (GNAT) method is a nonlinear model-reduction
method recently proposed in Ref. [1]. In contrast to
proper orthogonal decomposition (POD)–Galerkin, GNAT
employs discrete-optimal approximations: the solution
computed at each time step minimizes an error measure
with respect to the full-order-model solution. This leads to
improved stability and accuracy over POD–Galerkin for
many problems.

Here, we describe recent developments in the GNAT
methodology. First, we present global state-space error
bounds. Next, we introduce a ‘sample mesh’ concept that
enables an efficient, distributed implementation of GNAT
in finite-volume-based CFD codes. Finally, we demonstrate
GNAT’s performance on an unsteady, compressible, tur-
bulent flow problem with over 17 million unknowns.

I. PROBLEM FORMULATION

Consider the ODE resulting from semi-discretizing
the conservation form of the compressible Navier-Stokes
equations (with turbulence model) by a finite volume
method with specified boundary conditions:

dw

dt
= F (w(t), t;µ)

w(0) = w0(µ).
(1)

Here, w ∈ RN denotes the state (i.e., the vector of
conserved fluid variables) with N ‘large’, w0 denotes
the parameterized initial condition, and µ denotes the
vector of inputs, e.g., shape parameters. Our goal is to
rapidly solve (1) for arbitrary values of µ.

II. GNAT OVERVIEW

GNAT introduces approximations after ODE (1) has
been discretized in time. This enables the method to
achieve discrete optimality: it minimizes a measure of
the error between the computed state and the state full-
order-model state at each time step.

A. Full-order model

Assuming that Eq. (1) is solved by an implicit linear
multi-step integrator, the algebraic system of nonlinear
equations arising at a given time step for given inputs
µ can be written as

R(w) = 0, (2)

where we have omitted the time index and input-
parameter dependence for notational simplicity.

B. GNAT projection

GNAT reduces the dimension of Eq. (2) via projec-
tion: it computes a solution of the form w̃ = w0+Φwwr,
where Φw ∈ RN×nw is a reduced basis of dimension
nw � N computed by POD, for example.

Substituting w ← w̃ in Eq. (2) yields R(w0 +
Φwwr) = 0, which is an overdetermined system of N
nonlinear equations in nw unknowns. Rather than solve
ΦT

wR(w0 + Φwwr) = 0 like Galerkin methods, GNAT
computes w̃ as the solution to the minimization problem

minimize
w̄∈w0+range(Φw)

‖R(w̄)‖2 (3)

using the Gauss–Newton method. Thus, GNAT delivers
a solution that is discrete optimal at each time step:
the solution minimizes the discrete residual associated
with the full-order model over the trial subspace. In
contrast, Galerkin methods generally do not exhibit
discrete optimality [1].

C. GNAT complexity reduction

Although the dimension of the trial subspace is
small, the computational cost of solving nonlinear least-
squares problem (3) scales with N , because R : RN →
RN . To address this bottleneck, GNAT employs gappy
POD [3] to approximate the discrete residual:

R̃ = ΦR [ZΦR]
+
ZR. (4)

Here, ΦR ∈ RN×nR with nR � N defines a POD basis
for the residual, Z is a sampling matrix consisting of
ni � N selected rows of the identity matrix, and the +
superscript denotes the Moore–Penrose pseudoinverse.
This approximation is also discrete optimal, as

R̃ = arg min
x∈range(ΦR)

‖ZR− Zx‖2 (5)

Substituting R ← R̃ in (3) yields the GNAT model
defined at each time step:

minimize
w̄∈w0+range(Φw)

‖ΦR [ZΦR]
+
ZR(w̄)‖2. (6)



See Refs. [1], [2] for more information on the construc-
tion of the reduced bases and sampling matrix.

III. ERROR BOUNDS

The following proposition (proved in Ref. [2]) pro-
vides global state-space error bounds for the GNAT
solution and highlight the merit of GNAT’s design.

Proposition 3.1: Assume f : (w, t;µ) 7→ w −
∆tF (w, t;µ) satisfies the following inverse Lipschitz
continuity condition for inputs µ and n = 1, . . . , nt:

‖f(w, tn;µ)− f(y, tn;µ)‖
‖w − y‖

≥ ε > 0. (7)

Further assume that the backward-Euler scheme is em-
ployed and computes states wn, n = 1, . . . , nt satisfying

‖Rn(wn+1;µ)‖ ≤ εNewton. (8)

Then, for any sequence of states w̃n, n = 0, . . . , nt

satisfying w̃0 = w0, a global error bound for the state
at time step n is

‖wn − w̃n‖ ≤
n∑

k=1

akbn−k. (9)

Here,

a ≡ sup
n∈{1,...,nt}

sup
w 6=y

‖w − y‖
‖f(w, tn;µ)− f(y, tn;µ)‖

bn ≡εNewton + ‖ΦR [ZΦR]
+
ZR̄n(w̃n+1;µ)‖+

‖(I − ΦR [ZΦR]
+
Z)R̄n(w̃n+1;µ)‖

R̄n(w;µ) =w − w̃n −∆tF (w, tn;µ).
Note that GNAT minimizes one component of this error
bound (compare the definition of bn with Eq. (6)).

IV. SAMPLE-MESH IMPLEMENTATION

The ‘sample mesh’ concept enables a distributed,
computationally efficient implementation of the GNAT
method in finite-volume-based CFD codes. The main
idea is to extract only the subset of the mesh required
to compute the sampled residual ZR (see Eq. (6)); all
other parts of the mesh are not needed by GNAT and
are omitted from online computations.

V. EXAMPLE: AHMED-BODY WAKE FLOW

We assess GNAT’s performance on a benchmark
problem in the automotive industry: the Ahmed body.
The full-order model corresponds to an unsteady
Navier–Stokes simulation with a DES turbulence model
and wall function. The finite-volume discretization leads
to N = 17, 342, 604. The implicit three-point BDF
scheme defines the time discretization.

Figure 2 compares the pressure contours computed
by both the full-order model and GNAT. The GNAT

solution incurs a time-averaged error in the drag co-
efficient of only 0.68%, yet consumes only 0.23% of
the computational resources of the full-order model (in
walltime × cores). This savings is mainly attributable
to the decrease in cores from 512 to 4 enabled by the
sample-mesh implementation.

Fig. 1 Sample mesh (red) allows GNAT to run on 4
cores, as only 0.59% of nodes are loaded into memory.

(a) Full-order model (b) GNAT ROM

Fig. 2 Surface-pressure contours at t = 0.1 s
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gappy data. Journal of the Optical Society of America A,
12(8):1657–1664, 1995.



Challenges for mechanism reduction 
 

William J. Pitz 
Lawrence Livermore National Laboratory/Chemical Sciences Division, Livermore, USA 

 
Abstract—Detailed chemical kinetic mechanisms are becoming 
increasingly complex. They are growing in the number species 
and reactions due to large size of components in practical 
fuels. They also are growing due to the need to develop 
surrogate fuel models that contain many fuel components.  
Additionally, these models have to reproduce complex 
chemical and physical behavior important for combustion in 
practical devices. These requirements represent severe 
challenges to mechanism reduction needed for CFD codes. 

I. INTRODUCTION 

Much progress has been made in mechanism reduction.  It 
is now routine to reduce detailed chemical kinetic 
mechanisms for hydrocarbons (e.g. methane, propane, n-
heptane) that are valid for ignition from low to high 
temperatures  [1]. 

However, detailed chemical kinetic mechanisms are 
becoming increasingly complex. The number species and 
reactions in mechanisms are growing because of the need to 
address components in practical fuels that have a large 
number of atoms. A recent chemical kinetic model for a 
series of n-alkanes and iso-alkanes from LLNL contains 
7200 species and 31400 reactions [2].  They also are 
growing due to the requirements to develop mechanisms for 
not just a single fuel component, but multiple fuel 
components to represent practical fuels like gasoline and 
diesel fuels.  In a recent publication on surrogate fuels for 
diesel, a 8-component surrogate fuel for diesel is proposed 
to simulate multiple characteristics of real diesel fuels 
including composition, ignition behavior, vaporization, and 
density [3].  The corresponding chemical kinetic mechanism 
for this surrogate will also be huge because of the large 
number of components and their large size having 9 - 21 
carbon atoms each in each component.  These mechanisms 
must to be severely reduced in size to accommodate the 
needs of computational fluid dynamic (CFD) codes in 
combustion. 

II. COMPLEX BEHAVIOR TO BE SIMULATED 

A. Complex chemical behavior of fuels 
One of challenges of developing reduced mechanisms is 

ensuring that they can reproduce the complex chemical 
behavior of real fuels.  The simulation of low temperature 
behavior is important because low temperature combustion 
controls ignition in diesel and homogeneous charge 
compression ignition (HCCI) engines. Fig. 1 shows the 
complex behavior of ignition delay in a rapid compression 
machine that simulates ignition at internal combustion (IC) 
engine conditions. The ignition delay increases as the 
temperature increases in the so-called negative temperature 
coefficient (NTC) region. It is essential for detailed and 

reduced models to simulate this behavior to accurately 
model ignition in engines. 

The NTC behavior is also observed in species 
concentrations as the temperature is increased. Fig. 2 has 
experimental and computed results from the LLNL model 
[4] in a jet stirred reactor for stoichiometric mixtures of n-
heptane.  Reduced models for IC engine applications need to 
be able to reproduce this behavior to provide accurate 
predictions. 

 

Fig. 1. Measured and computed ignition delay times for stoichiometric 
mixtures of methyl cyclohexane [5]. 

 

 
Fig. 2 Measured and computed fuel concentration for temperatures over 
the NTC region in a jet stirred reactor for stoichiometric n-heptane [6]. 

The capability to predict soot emissions from combustion 
devices is also essential.   The formation of soot precursors 
is an important step in many soot models used in CFD 
engine simulation codes. Detailed and reduced mechanisms 
should be able to accurately simulate the formation and 
consumption of important soot precursors like benzene.  Fig. 
3 shows a comparison of the computed and measured 
benzene concentrations in a low-pressure flame using the 
LLNL methyl cyclohexane (MCH) mechanism [7].  

Detailed and reduced models should reproduce the 
chemical behavior of target fuels that often contain hundreds 
of components.   In the case of diesel fuel, Mueller et al. [3] 
proposed that components in the  surrogate mixture model 
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should represent the molecular structure characteristics of 11 
different carbon types and match their relative proportion in 
the target fuel as well has possible.  In this case, this 
required the inclusion of 8 different fuel components that 
represented the chemical classes of n-alkanes, iso-alkanes, 
cycloalkanes, 1-ring aromatics, 2-ring aromatics, and 
naphtho-aromatics.  The inclusion of all these fuel 
components makes the development of a highly reduced 
models challenging. 

Biofuels present an additional challenge because they 
have further molecular structures that need to be included in 
detailed and reduced models. When they are mixed with 
conventional fuels, the models must include all the 
molecular structures required for hydrocarbons as well as 
that of the biofuel. Additionally, biofuels are often saturated 
(i.e. include double bonds). Three of the five types of methyl 
esters in most biodiesels have double bonds in the carbon 
chain, and these three components are present in the highest 
concentration [8]. These double bonds allow addition of 
radicals to the double bond, an additional reaction class to 
be included in the model. Also, the presence of double 
bonds in a carbon chain on a methyl ester allow the 
formation of resonantly stabilized radicals that are long-
lived and need to be additionally considered in detailed and 
reduced models. 

B. Complex physical behavior of fuels 
Not only does the chemical behavior of fuels need to be 

simulated, but physical behavior is well. In the case of fuel 
vaporization, additional fuel components should be included 
to model the distillation properties of the fuel. In a reacting 
fuel spray, low boiling point components will evaporate 
prior to high boiling point components.  The lighter n-
alkanes that vaporize first ignite more slowly than the higher 
molecular components that vaporize readily at higher 
temperatures. To be able to include this effect in a surrogate 
fuel model, additional components in the same chemical 
class (e.g. n-alkanes) need to be included that span the 
boiling point range of fuel.  

 
Fig. 3 Measured and computed benzene concentrations in a low pressure 

MCH flame for stoichiometric and rich mixtures [7]. 

III. DISCUSSION 

To simulate the behavior real fuels, the chemical and 
physical behavior of the fuel must be taken into account. 
The molecular structures present in real fuels need to be 
included in the detailed and reduced models, and chemical 

behavior such as low temperature chemistry needs to be 
accurately represented. In order to predict soot emissions, 
the production and consumption of soot precursor species 
should be modeled accurately. In addition to the chemical 
properties, the surrogate mixture model should be able to 
simulate the physical properties such as the vaporization 
characteristics of the target fuel. This is particularly 
important for diesel and biodiesel fuels which contain high 
boiling point components so that some relatively low boiling 
point species will evaporate in a reacting spray before other 
higher boiling point compounds. Including all these fuel 
components and representing these complex behaviors in a 
reduced model is challenging.  These reduced models are 
used in multidimensional CFD codes that have many 
submodels which compete for computer resources. The 
requirements of surrogate fuel models with more than 10 
components means that the mechanisms must be highly 
reduced to limit the impact of the chemistry solver 
requirements on the overall reacting flow simulation. This 
severe reduction of the detailed models makes it difficult to 
simulate the complex chemical behavior of the real 
surrogate fuel. Currently, the reduced models for surrogate 
fuels with many components are partially reduced “by hand” 
rather than in a fully automatic way because of the severe 
reduction requirements. One of the challenges of mechanism 
reduction is to fully automate this reduction process.  
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I. INTRODUCTION

In this abstract we discuss strategies for efficient solv-
ing ordinary differential equations together with non-linear
algebraic equations. This set of equations is typical for
kinetic system for which a high number of quasi steady state
species have been defined. There are two possible strategies
which can be applied with regular chemistry solvers. 1)
operater splitting methods, and 2) nested solver technolgies.
For operator splitting techniques there is no high demand
on the speed of the solver for the set of algebraic equations.
Each timestep will be calculated faster compared to original
problem, since the size of each problem is reduced, and
the stiffness of the unsteady problem is reduced, since the
timescales have been clearly seperated. However operator
splitting techniques are not fully implicit, and a reduc-
tion of the timestep size is necessary. This decreases the
performance of the reduced chemical mechanism. Nested
solver strategies are fully implicit, and do not experience
the problem of limited timestep sizes. However there is a
high demand on the speed and accuarcy of the algebraic
solver.

In most chemistry software implicit Newton solvers are
applied. Just in the field of DNS explicit Runge Kutta
solvers are found. For the latter the application of operator
splitting method is the method of choice, since the explicit
Runge Kutta solver will not experience further restrictions
in time step size from the application of operator splitting
methods. For Newton methods applied for the outer solver
the inner solver for the set of algebraic equations will be
called for each species once, during the build of the Jacobian
matrix applied by the outer solver. There is further one call
of the inner solver for each iteration step of the outer solver.
Hence the calls of the inner solver are an order of magnitude
higher than calls of the outer solver, which explains the
high demand in speed on the inner solver. In addition a
high accuracy of the inner solver is needed to calculate the
Jacobian of the outer solver with the accuracy needed for
convergence.

In the presentation we compare two solution methods
with each other: 1) fixpoint iteration, and 2) a highly
optimized Newton solver. The shortcoming of method 1)

is that the convergence of the method is not guaranteed.
In case of divergence other methods need to be applied to
find a solution. One possibility is a random pertuabation of
the initial guess, which is successful for most applications.
The shortcoming of method 2) is the high CPU demand for
the build of the inner solver. To reach a faster solution we
developed a sparse matrix method, for which the sparsity is
optimized by simply ordering the list of chemical species.
We further use the fact, which the sparsity pattern of
the Jacobian matrix is only dependent on the chemical
species, which are chosen to be in steady state. This allows
performing the Gaussian elimination in a preprocessing
step, before starting the calculation of the physical problem.
This behavior is independent on the complexity of the
physical system. Beyond the huge speed up, that can be
reached through chemical lumping, and species elimination,
the QSSA resulted in a further 40% gain in CPU time. This
advantage is of interest for many complex CFD applications.
The accuracy of the resulting mechanism is very high. In
the following this technique is further discussed. In the
presentation we compare the different solution techniques
with each other.

II. THE NUMERICAL METHOD

The numerical method for the system of DAE is a com-
bination of two numerical methods, one for the system of
ODE and one for the system of NAE, the latter representing
the QSS species. The numerical method for the system of
ODE is a predictor-corrector method, where the predictor
is based on Gears backward differencing scheme and the
corrector is a damped Newton method. The system of NAE
is solved by a modified Newton method.

The Newton solver for the system of ODE (in the fol-
lowing called the outer solver), is iterated until convergence
for each time step. An inner loop for the system of NAE
(in the following called the inner solver) is iterated until
convergence, for each evaluation of the chemical source
terms. This solver is called several times while solving the
system of DAE. The inner solver must be very accurate to
allow an accurate prediction of the Jacobian, needed for the
outer solver. In the past we tested fix point solver, since they
are highly efficient. However, it was found that this solver



combination was not robust. In this work a Newton solver
is chosen as an inner solver. The computational cost of the
Newton solver scales roughly as n square if the decomposed
Jacobian is reused for many iteration steps. The inner
Newton solver must be optimized for computational cost, to
gain a speed up by the total procedure. The modifications of
the inner Newton solver that lead to a total speed up of the
solver combination are explained in the following sections.

1) The optimisation of the inner solver: A modified
Newton solver was chosen as an inner solver because of the
high accuracy demands on the solution from the NAE. This
implies that a Jacobian matrix must be calculated followed
by a Gaussian elimination. The back substitution and the
update of the source-vector must be called at each iteration
step of the inner solver. The CPU time of the inner solver
can therefore be decreased considerably by optimizing the
building of the Jacobian, the Gaussian elimination, the back
substitution and the update of the source vector. The sparsity
pattern of the Jacobian of the inner solver is constant in
time, since the chemical reaction scheme is invariant. The
values of the matrix elements depend on the concentrations
of the non-steady state species. The constant sparsity pattern
implies that all operations made on the Jacobian will involve
the same matrix elements of the Jacobian. Hence, every
operation involved in the entire Gaussian elimination and
the back substitution can be automatically written as source
code in a preprocessing step. A highly optimized sparse
matrix solver is generated. Only the non-zero elements of
the Jacobian are used in the Gaussian elimination and back-
substitution. The CPU-time needed for this solver is pro-
portional to the number of operations in the automatically
written source code. The sparsity pattern of the Jacobian,
and thereby the number of operations in the inner solver, is
strongly dependent on the order of the QSS species in the
concentration vector. In order to find the optimum order of
the QSS species vector, which corresponds to the minimum
number of operations in the inner solver, the Metropolis
algorithm is employed. The Metropolis algorithm accepts
or declines the new QSS species vector, which is generated
by a random shuffle of the QSS species order. The procedure
is outlined as follows:

Initialize the concentration vector for the inner solver
Initialize the fictive temperature θ
Repeat until terminating condition is fulfilled
1) Change the places of two randomly chosen species in

the concentration vector.
2) Create new Jacobian and perform Gaussian elimina-

tion.
3) Calculate the Sum Of Operations (SOP) in the Gaus-

sian elimination and back substitution of the solver
for the algebraic equations.

4) Calculate the SOP, based on the new and old concen-
tration vector.

5) If the SOP is less than zero accept the new concentra-

tion vector. Otherwise accept the new concentration-
vector with probability:

P (SOP, θ) = exp

(
−SOP

θ

)
6) Decrease θ
The initial value of θ and the function used in order to

decrease θ can be optimized for each case. In this work we
used a predefined number of iterations as termination condi-
tion. The Metropolis algorithm allows leaving areas of local
minima, and converging towards deeper local minima. With
some probability it is accepting SOP ¿ 0. This algorithm
does not guarantee that the global minimum is found, but
in most cases a deep enough local minimum, corresponding
to a very low number of operations in the inner solver, is
found. Hence, the total CPU time needed for the integration
of the system of DAE at high reduction levels will be
reduced. It should be noted that the final value of SOP does
not necessary correspond to the deepest minima. For this
reason, the QSS concentration vector which corresponds to
the deepest minima during the entire optimization procedure
is saved instead in this work. The optimized Jabian matrix
results in 317 non-zero elements after Gaussian elimination,
while the original matrix resulted in 452 non-zero elements.
We also calculated the worst sorting for the steady state
species, which resulted in 923 non-zero elements. This is a
factor 3 larger, than the optimum sorting. In Figure 1 we
show the calculated speed up of the program as a function
of the number of QSS species. The maximum speed up is
40% at 52 steady state species, this is about half of the
total number of species. Considering a quadratic decrease
of the CPU time with the number of species, a 75% speed
up would have been expected. However, this would assume
that the steady state species solver works at no CPU cost.

Fig. 1. Normalized CPU time as a function of the number of QSS species.
The figure shows the reference case T = 900 K, φ = 1.0, p = 40 bar.
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Abstract— We introduce an index to analyze numerical
datasets simulating ignition in reactive systems. The index
is obtained by combining the concepts of stretching rate in
dynamical systems with the CSP method, and is validated
with reference to a planar model of branched-chain reactions
and to a test case involving hydro-carbon oxidation kinetics.

I. INTRODUCTION

Ignition of hydrocarbon fuels is controlled by branched
chain-reactions and its complexities increase with the
length/size of the fuel molecule. A time scale analysis of
auto-ignition in spatially homogeneous systems, carried out
by either the Computational Singular Perturbation (CSP)
Method [1], [2] or Chemical Explosive Mode Analysis
(CEMA) [3], pointed out that a distinguishing feature of the
explosive behavior is the the emergence of positive eigen-
values during both chain-branching and thermal ignition.
To explore details of ignition with the simplest possible
model, we consider a planar (2D) model: an isothermal
branched-chain explosion model proposed by Williams.
We analyzed Williams’ model by means of (i) the local
tangential stretching rate (TSR) [4], and (ii) a normalized
index measuring the relative contribution of each mode
to TSR. We first present the theory for the TSR and
its validation with reference to Williams’ model and the
propane/air system.

II. TANGENTIAL STRETCHING RATE: THEORY

The point dynamics of a chemical kinetic system is
described by a set of ODEs dz

dt = g(z), z(0) = z0, z ∈
RN . The state vector z stands for the species concentration
vector, g(z) = Sr(z) the species reaction rate vector, S the
stoichiometric coefficients matrix, r(z) the net reaction rates
vector, and z0 the initial concentrations vector. Consider
a scaled measure v(t) of the difference between two tra-
jectories emanating from two nearby initial conditions, z1,
and z2. The vector dynamics of v(t) := lim|ε|→0(z2(t) −
z1(t))/|ε|, is described by the set of ODEs:

dv

dt
= Jg(z)v, v(0) = 1, (1)

where Jg := ∂g(z)/∂z is the Jacobian matrix of g, and 1
is a unit vector at z0 taken along any direction. The time

evolution of the norm v =
√
vT · v obeys the ODE:

dv

dt
=

(
vT · Jg · v

v2

)
v, v(0) = 1. (2)

The rate at which v grows/shrinks is governed by the (local)
rate of stretching of the dynamics, ωũ, evaluated along the
direction identified by the unit vector ũ := v/v and defined
as:

ωũ := ũT · Jg · ũ. (3)

We introduced the TSR by setting τ̃ := g/g, with g = |g|,
and N−1 normal stretching rates. Defining the unit normal
vector as ñ(z) = {τ̃ 2(z),−τ̃ 1(z)}, we have

ωτ̃ := τ̃T · Jg · τ̃ , ωñ := ñT · Jg · ñ. (4)

Now: Jg = AΛB, with left and right normalized eigen-
vector matrices A = {aj}j=1,N and B = {bi}i=1,N , and
eigenvalue matrix Λ = {λij}i,j=1,N . The unit vector τ̃ can
be rewritten after projecting the vector field over the right
eigenvector basis as τ̃ = g

g = 1
g
∑N
i=1 aif

i, with f i:=bi ·
g, and g =

∑N
i=1 aif

i. We now have

ωτ̃ = τ̃T · Jg · τ̃ =
1

g2

(
gTAΛB g

)
=

gT

g2

N∑
i=1

aiλi
(
bi · g

)
=

gT

g2

N∑
i=1

aiλi f
i =

1

g2

N∑
i=1

(
gT · ai

)
λif

i =

N∑
i=1

Wi λi,

(5)

where ωτ̃ is the weighted average of the eigenvalues with
weights that depend on the normalized mode amplitudes
and on the degree of co-linearity of the eigenvectors ai
with respect to the vector field g.

III. TEST CASES

A. Williams’ Model

Williams’ model [5] consists of a system of three irre-
versible isothermal branched-chain reactions: R→C (init),
R+C→ αC+P (prop), C→ P (term), where R=reactants,
C=intermediates, P=products. After normalization, the evo-
lution of R (x1) and P (x2) is described by:

x′1 = −x1 − x1x2,
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Fig. 1. Williams’ model: ω̃τ̃ (brown), ω̃ñ (green) and the real part of
eigenvalues λ1 (red), λ2 (blue).

ε x′2 = x1 + (α− 1)x1x2 − γx2,

γ x′3 = γ x2 + x1x2,

(x1(0), x2(0), x3(0)) = (1, 0, 0).

Figure 1 compares the evolution of the tangential (brown)
and normal (green) stretching rates with respect to variations
of the real parts of the eigenvalues. We observe that ωτ̃
follows the fast eigenvalue (positive (blue) in the first phase,
negative (red) in the last phase) up to time t = 0.2. In
the interval t = 0.2–0.45, the two stretching rates switch
between the eigenvalues, so that after t = 0.45, ωτ̃ follows
the slow eigenvalue (blue). The opposite trend is followed
by the normal rate. The striking finding is that ωτ̃ undergoes
a smooth transition from the fast to the slow scale occurring
in the time range t = 0.2 – 0.4. and in so doing it tracks
the controlling time scale at all times, independently of any
user-defined error threshold.

B. Propane/Air Curran Mechanism

We analyze (Fig. 2) the branched-chain/thermal, adia-
batic isochoric, auto-ignition of propane/air oxidation (Cur-
ran mechanism [6]) with the TSR, for initial conditions
p=1 atm, T=1000K, and a stoichiometric mixture. After
a short transient, ωτ̃ becomes coincident with λa+; a bit
sooner than the merging of the two positive eigenvalue, ωτ̃
departs from λa+. In fact, ωτ̃ begins to sense the “most
energetic” dissipative scales until equilibrium, when it be-
comes coincident with one particular negative eigenvalue.
Next, we define a Participation Index of the i-th mode to the

TSR as: Pωτ̃
i = Wi |λi|/

N∑
j=1

|Wj |λi||. Modes with a large

Pωτ̃
i contribute the most to the development of the most

energy containing time scale and form the active sub-space.
Figure 3 shows the modes mostly contributing to the active
sub-space for the propane/air mechanism (Pωτ̃

i > 10−2).
It can be noted that at sample #170 of Fig. 2, only two
modes (one with an eigenvalue with negative real part and
the other with an eigenvalue with positive real part), are
above the selected tolerance. We can also apply the CSP
criterion [7] to find the number of exhausted modes M .
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Fig. 2. TSR analysis for propane; eigenvalues with positive real parts
(black ); first non-exhausted mode (blue); ωτ̃ (red) , modes in active
subspace (green).
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Fig. 3. Participation Index and first non-exhausted mode for different
tolerances for sample #170 (see Fig. 2).

The picture shows that, the modes just slower than the first
non-exhausted mode, M+1, do not contribute much to ωτ̃ .

IV. CONCLUSIONS

The Tangential Stretching Rate concept is a proper char-
acteristic chemical time scale. It is the most relevant during
both the explosive and relaxation regimes, is intrinsic to the
dynamics, and, as such, it can be identified without the need
of ad-hoc assumptions.
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Abstract— Many important problems from chemistry,
physics or biology are modeled by nonlinear partial differential
equations. Often, e.g. in the context of inverse problems, opti-
mization or uncertainty quantification, the numerical models
need to be evaluated for many different parameter values. As
numerical simulations consume a huge amount of computa-
tional power, many–query applications are still infeasible to
deal with.

The reduced basis can be a remedy for such situations. It
features an automatic procedure to generate projection based
reduced order models equipped with reliable error bounds,
which are efficiently computable. The latter allows to control
the accuracy to an extent that matches the reliability of the
underlying high dimensional discretization.

In this presentation, we present a variant of this method that
can be applied to a variety of nonlinear evolution equations.
Numerical examples are provided for various partial differen-
tial equations from the field of computational fluid dynamics.

I. INTRODUCTION

The reduced basis method is a means to deal with
many–query or real–time applications based on simulations
of partial differential equations. The idea is to let the
experimenter choose a parametrization of the problem that
restricts the manifold of possible solutions S to those that
are “interesting” to the application. Then, the essential
characteristics of this manifold can be extracted as basis
functions of a low dimensional reduced basis space. The
generating algorithms depend on few solutions of a high–
dimensional model, but give rise to efficient and still reliable
reduced models. Reference [4] provides a good overview of
the machinery with a focus on linear problems.

For nonlinear problems, it is not sufficient to approximate
the solution manifold S by a linear space. Supplementary,
the nonlinear behaviour of the system needs to be “learnt”
and approximated by the so–called empirical operator in-
terpolation method.

In this presentation, we want to focus on nonlinear
parametrized evolution equations of the form

∂tu(µ; t) + L(µ)u(µ; t) = 0, u(µ; 0) = u0(µ) (1)

TABLE I
EXEMPLARY RUN–TIME COMPARISON.

N M ø-run–time[s] max. error offline time[h]

H = 7200 − 90.01 0.00 0
42 72 4.44 1.73 · 10−3 0.54
83 144 6.04 5.74 · 10−5 1.09
125 216 8.37 7.30 · 10−6 1.55
167 288 11.92 7.63 · 10−7 2.08
208 360 15.08 2.31 · 10−7 2.69
233 402 16.48 1.55 · 10−7 3.27

defined on a regular domain Ω, and supplemented with
adequate boundary conditions. Here, µ denotes a vector of
parameters, controlling e.g. material constants, the domain
geometry, boundary or initial conditions. For the numerical
model, we want to focus on finite volume discretizations by
an Euler scheme of the form(

Id + ∆tLI
h(µ)

)
uk+1
h (µ) =

(
Id−∆tLE

h (µ)
)
ukh(µ),

(2)
where the operator L is decomposed into implicit and
explicit computations. After the generation of a suitable re-
duced basis and empirical interpolants for the operators, all
parameter independent parts can be reduced by a projection
onto the reduced basis space. This allows to compute (2)
with low computational complexity.

Table I shows time gains and accuracy results from one
of our experiments with a nonlinear diffusion problem.
Compared to the high dimensional problem, the time gain
factor is in the range of 8-20 depending on the size of
reduced basis N and the number of interpolation points M .

In the following, we want to dwell shortly into the con-
cepts of basis construction, empirical operator interpolation
and a posteriori error estimation.

II. GREEDY BASIS CONSTRUCTION

If the experimenter defines the parameter vector µ and
can choose very tight constraints on the possible set of
vectors M, he gets a rather small response surface of



interesting solutions S := {uh(µ)|µ ∈M}. Then, we can
assume that a low–dimensional reduced basis exists span-
ning a linear space that (almost) comprises this manifold.

The theoretical measure for the suitability of the manifold
S is given by the Kolmogorov N -width of this manifold.

dN (S) := inf
V

dim(V)=N

sup
vh∈S

min
uh∈V

‖vh − uh‖Wh
. (3)

Though not explicitly computable, [3] made the following
observation: If the Kolmogorov N -width converges to zero
with growing N at polynomial or exponential speed, we
can construct sequences of reduced basis spaces that follow
this convergence. This is achieved by iterative extension
with a “greedy” algorithm: Given a reduced basis space of
dimension N , a new basis vector can be defined by

φN+1 = arg min
uh(µ)∈S

‖uh(µ)− ured(µ)‖ , (4)

where the reduced solutions ured(µ) are computed with
a low–dimensional reduced basis version of (2). Instead
of computing the true error, however, we want to use a
posteriori error estimates that can be efficiently computed.
This allows to search the manifold S for a larger set of new
potential reduced basis functions.

III. EMPIRICAL OPERATOR INTERPOLATION

The concept applied here, is based on the empirical
interpolation method (EIM) [2]. The method empirically
learns about interpolation points and ansatz functions for
the solutions of interest. This gives rise to interpolations

IM [Lh]vh = (Lhvh) |XM
Ξt
M ≈ Lhvh. (5)

Here ΞM denotes a matrix of interpolation ansatz func-
tions, and (v)XM

refers to the vector of function evalu-
ations (v(x1), . . . , v(xM )) at interpolation points XM :=
{x1, . . . , xM}. In order to efficiently compute the operator
evaluations at these interpolation points, the operator needs
to fulfill some sparsity properties. This, however, is usually
true for numerical schemes.

IV. A POSTERIORI ERROR ESTIMATES

From our discussion about the greedy algorithms to
construct the reduced basis space, it follows that efficiently
computable error estimates are crucial ingredients for re-
duced basis methods. In this presentation, we obtain bounds
ηkN,M,M ′(µ), such that∥∥ukh(µ)− ukred(µ)

∥∥ ≤ ηkN,M,M ′(µ). (6)

The subscripts of the error refer to the dimension N of
the reduced basis space, the number of interpolation points
M , and a further parameter M ′ controlling the accuracy
of the computed error induced by the empirical operator
interpolation.

Figure 1 shows convergence results of a greedy algorithm
with different a posteriori error estimates, proving their
suitability for this problem.
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Abstract— Open spatially homogeneous reactive systems
may possess multiple physical equilibria and display limit
cycle behavior. It is demonstrated for two systems, i) a simple
Gray-Scott model, and ii) a detailed hydrogen-air model, that
the existence of multiple physical equilibria and limit cycles
introduces challenges for the use of manifold methods as a
reduction technique. In particular, detailed understanding of
boundaries of basins of attraction is likely required in order
for any reduction to maintain fidelity to the full model.

I. I NTRODUCTION

It is well known that open spatially homogeneous reactive
systems may possess multiple physical equilbria and exhibit
limit cycle behavior. Any stable physical equilbria, as well
as any stable limit cycle, will also possess a basin of
attraction, whose boundaries are difficult to discern without
fully exploring a multi-dimensional phase space. It is also
the case that many reduction methods rely upon projecting
an arbitrary point in phase space onto a lower dimension
manifold. One common method for identifying such mani-
folds which are one-dimensional is to connect equilbria with
heteroclinic orbits and examine their ability to attract nearby
orbits via calculation of normal stretching rates [1]. Those
that are attractive are known as Slow Invariant Manifolds
(SIMs). However, it must be recognized that naı̈ve projec-
tion, uninformed by knowledge of the basins of attraction,
from an arbitrary point onto a lower dimensional manifold
runs the risk of projecting onto the wrong manifold. For
cases in which there are multiple candidate SIMs, even less
is clear, including how to define a basin of attraction for a
SIM.

In this study, we summarize two such cases whose full
exposition, including literature review, model equations, and
numerical parameter values, is given by Mengers [2]. Those
two cases are i) a simple Gray-Scott model, widely used to
study pattern formation dynamics, and ii) a detailed kinetics
model for hydrogen-air combustion.

II. GRAY-SCOTT

The Gray-Scott model has two irreversible reactions in
three species,U , V , andP : U + 2V → 3V , V → P. The
spatially homogenous version is

dYU

dt
= −YUY 2

V + F(1 − YU ), (1)

dYV

dt
= YUY 2

V − (F + k)YV . (2)

Here Y represents mass fraction,t time, with F > 0 and
k > 0 as parameters. One real finite root,R1 : (YU , YV ) =
(1, 0), is guaranteed to be a sink. The character of the other
two roots depends onF andk. WhenF = 9.16× 10−3 and
k = 3.1×10−2, three real positive finite roots,R1, R2, and
R3, are found, plotted in Fig. 1a.
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Fig. 1. Naı̈ve projection onto a reduced manifold in the Gray-Scott system

The sink atR1 has heteroclinic connections with the
saddle atR2 as well as the point at infinity atI2. There is
also a spiral source atR3. SurroundingR3 is an invariant
manifold comprising a stable limit cycle, whose basin of
attraction is shaded. Figure 1a depicts an initial condition
within the basin of attraction of the limit cycle, denoted
with a “+.” Many reduction algorithms would project this
point onto the manifold emanating fromI2, which leads
ultimately to R1. This induces large error, as the actual
trajectory is led to the limit cycle surroundingR3. Figure 1b
depicts the evolution ofYU andYV from “+” for its actual
limit cycle behavior and that obtained upon naı̈ve projection
to the wrong reduced manifold.

III. H YDROGEN-A IR

We next employ a 9 species, 20 reaction hydrogen-air
mechanism with a species ordering of{O2, H2, H2O, N2,
OH, H, O, HO2, H2O2} in an isothermal, isochoric simu-
lation of combustion with fresh mixture inflow balanced by
exhaust. The system has 3 algebraic constraints; therefore,
we can confine attention to speciesi = {1, 2, 3, 5, 6, 7}. We
identify 97 real finite equilibria. Of these, 3 have positive
concentrations for all 9 species, making them physical, and
13 have one positive eigenvalue, making them candidates
for connection to the physical roots. For the physical
equilibria, R4 has all negative real eigenvalues and thus
is a sink;R69 has one positive real eigenvalue, making it a
candidate for connecting to other equlibria; andR1 has four



negative real eigenvalues and one complex conjugate pair
of eigenvalues with positive real part, making it a saddle.
The long time dynamics of systems with initial conditions
in the neighborhood ofR1 exhibit limit cycle behavior.

We integrate with initial conditions perturbed alongR69’s
unstable eigenvector in either direction. In one direction, the
trajectory approachesR4 along its slowest eigenvector; this
is a branch of the SIM. In the other direction, the trajectory
collapses onto the limit cycle. These trajectories are shown
in a projection of phase space in Fig. 2. Herezi is the
specific mole number of speciesi.
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Fig. 2. The limit cycle and a SIM branch in the hydrogen-air mechanism.

Two time evolutions are shown in Fig. 3, where from
nearly identical initial conditions, the top and bottom dis-
play relaxation toR4 and the stable limit cycle, respectively.
Thus,R69 lies on the boundary of the basin of attraction
between the limit cycle andR4. We can identify other
branches of the SIM by examining the heteroclinic orbits
from other candidate equilibria. We find four additional
branches, emanating fromR9, R17, R30, and R53, re-
spectively. A projection of these branches’ approach to
the physical equilibrium sink,R4, is shown in Fig. 4. To
evaluate the attractiveness of these branches, we calculate
the normal stretching ratio along each manifold. We find
that all five normal stretching ratios remain negative along
the entire length of both theR69 andR53 branches. Thus,
both are candidates for a SIM, rendering it also useful to
construct a basin of attraction for each, not done here. We
find there are positive stretching ratios in multiple normal
directions for a large portion of the branches nearR9, R17,
andR30. This indicates nearby trajectories may diverge, an
undesirable trait for a reduction.

IV. CONCLUSION

These results raise concerns about the heteroclinic orbit
SIM construction technique for open systems in the absence
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of knowledge about the basins of attraction, which are
difficult to obtain in practice.
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Abstract— The method of reaction-diffusion manifolds 
(REDIM) has been shown to be a very efficient model 
reduction tool for reacting flows. The method is based on 
attracting low-dimensional manifolds defined in the 
composition space of a reacting flow system. The reduced 
kinetic mechanism is constructed as a table of a slow manifold 
mesh in the system composition space. This work discusses the 
ability of the method to describe transient behavior of a 
combustion system. In order to access this property of the 
reduced model two types of system dynamics are investigated 
with respect to the tangential and normal subspaces of the 
system slow manifold. This is accomplished by a local analysis 
of the eigenvalues of the chemical source term (projecting the 
Jacobian onto the tangential and normal subspace of the 
manifold) and by comparison of the detailed and reduced 
system behavior. Counter-flow diffusion flames of nitrogen-
diluted Hydrogen-Air are used to illustrate the results. 

I. INTRODUCTION 

In order to fully describe reacting flows mathematically a set 
of conservation equations for the ( 2 snn )-dimensional 

state vector  
snsn MwMwph /,...,/,, 11  has to be 

considered [1]. However, accurate models of chemical 
kinetics become not treatable in a reasonable time even by 
up to date soft- and hardware facilities due to the models 
complexity. Thus, the interest in automatic approaches that 
reduce the dimension and complexity of the system without 
quantitative loss of the accuracy has increased over the last 
decade. The assumption about the existence of so-called 
attractive low dimensional manifolds takes a central role in 
developing modern model reduction schemes [2-7]. 

The method of reaction-diffusion manifolds (REDIM) [7-
11] is one of such approaches that allow us both to obtain a 
simplified description (model) of the chemical kinetics and 
to account for the influence of the molecular transport onto 
the reduced model. Similarly to other approaches, the main 
idea behind the REDIM is that the states of the detailed 
systems solution profiles  tx,   during the transient 
motion of the system are completely confined to a low(ms)-
dimensional subset of the state space. Thus, to describe the 
transient evolution, whenever the subset is known, less 
parameters would be needed - ms<< n. The manifold 
accounts for the fact that the reacting system states are tend 
to the states in the composition space where the fastest 
chemical processes are relaxed (similar to the main 
assumption of the ILDM method [2, 7]), moderate ones are 
strongly coupled with the transport, while relatively slow 

chemical processes are governed by strong molecular 
transport processes [8]. 

It has been shown in previous works that the REDIM 
approach is able to represent stationary solutions of 1D 
laminar and turbulent flames [8-11]. This work represents a 
discussion of properties of the method which describe its 
ability to capture transient motions such as extinction or re-
ignition [11]. 

II. REDIM 

The method is searching for an approximate of an invariant 
manifold of relatively slow system motions

  smRM   , . Here   is a parameterization of 
the manifold. An approximation to the invariant manifold is 
obtained as the stationary solution of a multi-dimensional 
parabolic system of partial differential equations [7]. In this 
way the system itself adapts to the states which optimally 
suits to capture the above mentioned structure of the 
decomposition of motions. In order to make use of it, the 
REDIM is tabulated in the form    . Solving the 
conservation equations for the parameters θ yields the time 
dependent states within the manifold [7, 10, 11]. 

III. ANALYSIS 

In order to verify the REDIM method and to address the 
transient system behavior a state space analysis of a 1D 
counter-flow diffusion flame has to be considered at first. 
Then, after a local analysis of the systems source term a 
comparison of the stationary and non-stationary system 
solution profiles of the detailed and reduced systems is 
carried out. 

A. Tangential motions 
The invariance condition of the REDIM postulates that 

the dynamics of the detailed system will at any time be 
tangential to the REDIM. However, if the system solution 
profile is perturbed and the system states leave the manifold 
it has to be addressed for a secure use of the reduced model. 
In this case the time scales of physical transport coupled 
with the time scales of chemical reaction lie beyond the 
band width of time scales covered by the two parameters θ. 
Suppose that there is a detailed stationary solution attached 
to the REDIM. In case of strong perturbations the transport 
processes will cause the detailed profile to leave the REDIM 
while moving to another stationary state where it is attached 
again to the REDIM. If the perturbations are strong enough 



they can lead to extinction (or to another quasi-stable 
regime). 

The question is how accurately the REDIM can capture 
the tangential part (i.e. the projection onto the tangential 
subspace) of these transient motions as well as the 
conditions which lead to extinction. In order to investigate 
the stability properties of the reduced model the local 
Jacobian  of the chemical source term is reformulated in 
terms of a basis of the composition space containing the 
vectors Ψ  [11]. The magnitude of the eigenvalues of the 
transformed Jacobian gives information about the transient 
behavior (see Fig. 1 (a), (b)). 

B. Motions normal to the manifold 
The attractiveness of the REDIM is justified by the 
decoupling of the fast chemical processes. It is assumed that 
whatever perturbations are the system relaxes fast towards 
M and the balance between diffusion and reaction is 
established. To confirm this assumption the local Jacobian 
of the chemical source term is reformulated in terms of a 
basis of the composition space containing the vectors Ψ  
where the vector Ψ  is transversal to the tangential 
subspace of the manifold. As illustrated by the contour plot 
in Fig. 1 (c), where the real parts of the smallest in 
magnitude eigenvalue is shown, the eigenvalues of the 
transformed Jacobian are strictly negative and large in 
magnitude. Therefore, if perturbations cause the profile to 
leave the REDIM, the chemical processes will force the 
profile to move back onto the manifold. The relaxation time 
can be roughly estimated by the smallest eigenvalue of the 
projected source term. 

IV. CONCLUSIONS 

The ability to describe the transient (non-stationary) 
behavior of a reacting flow system by the REDIM method 
of model reduction was discussed. By analyzing the 
eigenvalues of the reformulated local Jacobian of the 
chemical source term in terms of a new basis of the 
tangential bundle it could be shown that the REDIM can 
capture both stable and unstable chemical modes that are 
coupled to the transport. Moreover, it could be shown, that 
strong negative eigenvalues of the Jacobian in terms of a 
basis containing vectors transversal to the tangential 

subspace substantiate the invariance assumption. It was 
shown how this procedure can be used to prove that the 
REDIM adequately captures the decomposition and the 
coupling of physical transport with chemical reaction for the 
case of transient dynamics. 
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Fig 1. Contour lines represent real parts of the eigenvalues of the Jacobian of the transformed reaction source term of the system calculated on 
the 2D REDIM (all projections are in specific mole numbers). The transient solution of the detailed system is shown by black lines, solutions of 
the reduced model are white lines shown on the 2D REDIM, the red line shows a perturbed initial solution [11]. 
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Abstract— Key features of the flame structure remain un-
changed throughout the lean and ultra-lean premixed regime,
where peak temperatures are a natural parameter. As esti-
mates for peak temperatures can be calculated from local
states and transport processes, future expansions to arbitrary
reacting flows are envisioned.

I. INTRODUCTION

In state-space modeling with reduced-order chemistry,
results of detailed 1D simulations are used to span a
manifold in which properties are tabulated based on a small
set of parameters. As the resulting chemistry tabulation uses
information obtained from detailed reaction mechanisms,
full chemistry is implicit to simulation results. A main
concern of this approach is a suitable parameterization, and
various definitions of parameters and associated manifolds
have been proposed in available literature, e.g. Intrinsic Low
Dimensional Manifolds (ILDM), various flamelet based
approaches (FPV, FGM, MFM, . . . ), and, more recently,
Principal Component Analysis (PCA).
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Fig. 1. Contours of constant laminar burning flux ṁL and adiabatic flame
temperature Tad as a function of Tin and Φ based on 696 adiabatic flame
simulations for lean CH4/air mixtures (using CANTERA/GRI-Mech 3.0).

II. METHODOLOGY

In any state-space modeling approach, the main concern
is whether the controlling chemistry manifold captures
flame characteristics over a broad range of mixture stoi-
chiometries and reactant temperatures. For the present study,
a large number of lean premixed CH4/air simulations is
used to investigate combustion characteristics (Fig. 1). For
each simulation, the flame structure is analyzed in terms
of species concentrations, net species production rates and

heat release. Following a precursor study [2], characteristic
temperatures within the inner layer of the flame sheet are
defined by minima/maxima of function values, and their first
and second derivatives with respect to axial position.

Characteristic temperatures within the flame structure
represent descriptive information. In order to identify a
suitable minimal parameterization, the information is plot-
ted in terms of rudimentary parameters that define flame
simulations: inlet conditions are specified by (normalized)
equivalence ratio Φ and reactant temperature Tin, whereas
laminar burning flux ṁL and adiabatic flame temperature
Tad represent simulation results. Once a suitable parame-
terization is identified, PCA reveals whether characteristics
are valid for a range of similar conditions.

The analysis of the flame structure is based on CH4/air
flames that are both adiabatic and one-dimensional. In the
context of arbitrary reacting flows, parameters defining a
manifold may not be available locally, and thus require
estimates based on local mass fractions, temperature and
associated transport processes.

III. RESULTS AND DISCUSSION

Figure 1 shows 696 test cases where inlet conditions
(Φ, Tin) follow a pseudo-random Sobol sequence; contours
represent simulation results, i.e. ṁL and Tad. For all
test cases, characteristic temperatures T ?

i,j are obtained via
post-processing of detailed flame structures. Characteristic
temperatures for heat release are presented in Figure 2,
where insets display T ?

i,j(Ḣ) as a function of Φ, Tin, ṁL

and Tad, respectively. Results illustrate that inlet conditions
are ill-suited for a universal parameterization, despite the
fact that they constitute the most convenient parameteri-
zation. In comparison, a parameterization based on ṁL

shows a good collapse of the initial curvature of the
heat release, T ?

2,0(Ḣ), which is attributed to a transition
from the convection-diffusion dominated preheating layer
to the reaction-diffusion dominated active reaction zone. A
parameterization based on Tad results in an almost perfect
collapse of T ?

i,j(Ḣ), which is a strong indication for Tad

being the single-most important parameter characterizing
processes within the active reaction zone.

The collapse of characteristic temperatures T ?
i,j for com-

parable Tad indicates that, except for a scaling factor,
species production rates and heat release follow almost
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T?1;1(Ḣ)
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Fig. 2. Comparison of different parameterizations for characteristic temperatures for heat release Ḣ , calculated for 696 test cases (Fig. 1). From left to
right, parameterizations use normalized equivalence ratio Φ, inlet temperature Tin, mass burning rate ṁL, and adiabatic flame temperature Tad.
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Fig. 3. Principal Component Analysis (PCA): comparison of simulated
and recovered heat release Ḣ . Principal components (PC’s) are calculated
for same test case as well as multiple simulations with comparable Tad.

identical progressions. This result implies that a reduced
manifold for a description of chemical kinetics can be
obtained, where source terms are tabulated based on two
parameters: (i) the local temperature T , which captures the
position relative to T ?

i,j , and (ii) the adiabatic temperature
Tad of the flame simulation. Figure 3 compares simulated
heat release to heat release recovered from PCA as a func-
tion of local temperature. It is evident that Ḣ is successfully
recovered from PC’s obtained for multiple test cases with
comparable Tad, which illustrates the collapse of chemistry
characteristics onto a reduced manifold.

PCA results corroborate that net species production rates
and heat release collapse based on Tad, and thus are
governed by a reduced manifold for source terms in suitable
transport equations. Since Tad is a non-local characteristic
of the local thermo-chemical state, the proposed parameter-
ization required estimates if applied to arbitrary flow fields.
In order to obtain accurate estimates for Tad, conservation
equations for energy and atomic species are integrated along
an adiabatic stream tube extending from local conditions to
a virtual state far downstream of the flame. Thermodynamic
equilibrium yields T̂ad based on estimates for enthalpy and
atomic species concentrations; estimates for Tin and reactant
composition are obtained in a similar fashion [1]. Figure 4
demonstrates that accurate estimates T̂ad are recovered from
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Fig. 4. Estimates for adiabatic temperatures T̂ad based on local tem-
perature T and species concentration Xk , as well as fluxes of heat q,
molecular species jk , and atomic species jα [1].

the local thermo-chemical state, where the consideration of
associated transport processes is essential.

IV. CONCLUSIONS

A parameterization based on peak temperatures Tad pro-
duces an almost perfect collapse of flame characteristics,
implying that Tad is a natural parameter for the generation
of reduced manifolds for reaction chemistry. In contrast to
most other descriptions of manifolds for premixed flames,
the current work does not require the definition of a progress
variable. Instead, the relative position within the flame is
characterized by the local temperature T and an estimate
T̂ad. It is noted that the procedure applies to arbitrary
reacting flows, where corresponding (virtual) 1D premixed
flames are obtained by calculating T̂ad from the local
thermo-chemical state and associated transport processes.
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Abstract— We discuss the motivation, utility, and challenges
associated with analysis and reduction of chemical models
under uncertainty. We outline a mathematical formulation
for this area of study, focusing on a probabilistic uncertainty
framework and dynamical analysis/reduction methods for
ordinary differential equation systems. We highlight our recent
progress in this area, and discuss opportunities and challenges
going forward.

I. INTRODUCTION

Detailed chemical kinetic models for hydrocarbon fuels
are typically complex, involving a large number of reac-
tions and species. These elementary-step kinetic models
are constructed to include chemical reaction pathways and
intermediate/radical species that are judged to be impor-
tant/relevant. Typically, each reaction involves at least 3
parameters, being the Arrhenius rate expression coefficients.
These parameters are either measured experimentally, es-
timated from ab-initio quantum computations, or derived
using rate rules from other rate coefficients. In any of these
scenarios, these rate parameters are known only to within
a certain degree of uncertainty. Broadly speaking, chemical
kinetic models are characterized by degrees of both model
and parametric uncertainty. In the present discussion, we
focus primarily on parametric uncertainty.

Given the above, there is a need for chemical model
analysis and reduction strategies to take these uncertainties
into account, beside the need to accomodate a broad range
of state values and operating conditions. This argument
is driven by both accuracy and efficiency considerations.
From an accuracy perspective, it is of interest to ensure that
conclusions regarding the acceptable performance of a given
reduced model are valid over the range of uncertainty in the
parameters of the starting detailed model. Just like a reduced
model is evaluated against the detailed model over a range
of states, this ought to also span a degree of uncertainty
in detailed model parameters. In principle, this translates to
a higher computational cost in the analysis/reduction strat-
egy. However, it can also translate to considerable savings
if/when the choice of reduced model accuracy thresholds is
informed by the degree of uncertainty in the detailed model
parameters. It does not make sense to insist on reduced
model accuracy requirements that are significantly tighter
than the uncertainty in the detailed model predictions. The

model reduction error budget ought to take both sources of
error into account.

These observations motivate the development of model
analysis/reduction methods that take uncertainties into ac-
count. In the present context, we give a brief outline of first
steps along the path towards this goal, with a particular
focus on dynamical analysis methods, specifically compu-
tational singular perturbation (CSP), relying on eignanalysis
of the Jacobian of the chemical source term under paramet-
ric uncertainty.

II. FORMULATION

We consider chemical reaction processes in a spatially ho-
mogeneous mixture, where the time evolution of the system
state vector is described by a system of ordinary differential
equations (ODEs). In the deterministic context, one can
employ a number of available strategies for model analysis
and reduction. We consider specifically CSP analysis and
associated model reduction strategies. This method has been
used to provide a range of feasible simplified chemical
models with roughly monotonous variation of error relative
to a given detailed model [6,10,11].

Further, we employ a probabilistic uncertainty quan-
tification (UQ) framework, where we represent uncertain
quantities as random variables. We rely on spectral polyno-
mial chaos (PC) representations of random variables [3,5].
Forward propagation of uncertainty in this context can
be done using sampling-based non-intrusive methods [5].
This involves evaluation of the deterministic model for
a set of parameter values, and assembling the resulting
predictions and analysis results to arrive at uncertain outputs
of interest. While this is certainly viable, it can be severely
taxed by the curse of dimensionality when there is a large
number of uncertain parameters. This is particularly true
when eigenanalysis is required for CSP analysis with each
sample. In the present context, we focus on intrusive PC
UQ methods [2,5], where the uncertain/random chemical
ODE system is transformed via Galerkin projection into a
deterministic ODE system for the spectral PC expansion
(PCE) coefficients of the uncertain system state. In this
context, a single solution of this (larger) ODE system
(system size grows with both dimensionality and order)
suffices to provide the full uncertain solution picture.



Extending model analysis/reduction to the uncertain ODE
context has received some attention in recent literuare. In
[4], small parametric perturbations were considered in the
Proper Orthogonal Decomposition (POD) context. Sonday
et al. [9] studied the eigenstructure of the Galerkin ODE
system Jacobian of model uncertain/random ODE systems.
Salloum et al. [8] provided a joint CSP-UQ study of a model
uncertain ODE system with approximate characterization of
the eigenstructure of the the Galerkin ODE system Jacobian.

III. STOCHASTIC EIGENVALUE PROBLEM

In [1,9], we established a number of facts regarding the
eigenstructure of the Galerkin ODE system Jacobian and
its relationship to the statistics of eigenvalues/eigenvectors,
hence dynamics, of the original random ODE system.
Results indicate that, in the limit of infinite PC order, the
eigenvalues of the Galerkin system tend to the distribution
of eigenvalues of the original system. Further, for finite
order, these two representations of the uncertain eigenvalues
are close, and convergence with PC order, in the sense of
measures, can be observed. Moreover, we outlined a con-
structive strategy for the eigenvectors of the Galerkin system
Jacobian, that approximates that of the sampled eigenvectors
of the original system. Accordingly, it is clear that there
is a path towards learning the dynamical landscape of an
uncertain chemical system by analysis of the eigenstructure
of the corresponding Galerkin Jacobian.

IV. CSP ANALYSIS OF UNCERTAIN ODES

Given the above, we now have the beginnings of a
strategy towards CSP analysis of uncertain chemical ODEs,
and associated model reduction strategies. Further work is
required to extend the various elements of the deterministic
analysis/reduction method to the stochastic setting. Thus,
while we have means of evaluating the random system
eigenstructure, we need to establish robust methods for an-
alyzing the random CSP vectors/co-vectors and associated
modal expansion, to arrive at meaningful characterizations
of uncertain low-dimensional manifold structure, fast and
slow subspaces, classification of major/minor/radical spse-
cies, and importance and participation indices. We note for
example, that uncertainty in fast processes can translate into
uncertainty in slow manifold structure, while uncertainty in
slow processes would primarily influence the evolution of
the system along a deterministic manifold. Further, uncer-
tain/random CSP Indices have to be compared to each other,
and to specified thresholds, employing statistical measures
of distance. Similarly, in the model reduction context,
comparisons between model predictions, and estimates of
error measures, have to rely on probabilistic analogues to
the original deterministic procedures.

From another perspective, the Galerkin-projected ODE
system, whose purpose is to allow the exploration of the
dynamics of the original uncertain ODE system, is itself

a candidate for CSP analysis and model reduction, in
order to facilitate its time-integration. Given high-order
and dimensionality, this system can become quite large
and computationally expensive to solve/analyze. Its time
integration is challenging, both from accuracy and stability
viewpoints [7,12]. Accordingly, there are opportunities for
using CSP, or other dynamical analysis methods, along with
associated model reduction strategies, in this context.
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