5th IWMRRF, Berlin, June 2015

Tangential Stretching Rate Analysis of Ignition in a Non Premixed System

Mauro Valorani, P.P.Ciottoli, Sapienza University of Rome Cosmin Safta, CRF/SANDIA, Livermore

Outline of the talk

We analyze ignition phenomena by resorting to the stretching rate concept introduced in the study of dynamical systems.

We construct a Tangential Stretching Rate (TSR) parameter by combining:

stretching rate concept

and

local tangent space decomposition in eigenmodes

TSR identifies unambiguously the **most energetic scale** at a given space location and time instant

TSR is a **state function** (TSR depends only on local mixture composition, temperature, and pressure)

TSR can be readily computed during the post processing of computed reactive flow fields, both for

- 1) Spatially homogeneous (auto-ignition in batch reactors) and
- 2) In-homogenous systems (premixed and non premixed systems)

We verified the properties of TSR with reference to hydro-carbon oxidation kinetics:

- 1) Ignition in batch reactors
- 2) Unsteady flamelet model a.lgnition
 - b.Quenching
 - c.Re-ignition

We will discuss how to extend the definition of the TSR to PDEs models including transport as well as kinetics

Stretching Rate Analysis

$$\frac{d\vec{z}}{dt} = \vec{g}(\vec{z}) \qquad ICs: \vec{z}(0) = \vec{z}_0$$

State vector z: species concentration vector

g(z) = Sr(z) with the species reaction rate vector Vector field:

S: stoichiometric coefficients matrix

net reaction rates vector

initial concentrations vector

Consider two nearby trajectories:

$$\vec{\mathbf{z}} = \vec{\mathbf{z}}_0 + \boldsymbol{\varepsilon}$$

Define a scaled vector distance between the two as: $\vec{\mathbf{v}} := \lim_{\varepsilon \to 0} \left(\frac{\vec{\mathbf{z}}_2 - \vec{\mathbf{z}}_1}{\varepsilon} \right)$

$$\vec{\mathbf{v}} \coloneqq \lim_{\varepsilon \to 0} \left(\frac{\vec{\mathbf{z}}_2 - \vec{\mathbf{z}}_1}{\varepsilon} \right)$$

$$\frac{d\vec{\mathbf{v}}}{dt} = \mathbf{Jac}_{\mathbf{g}}(\mathbf{z})\vec{\mathbf{v}}(t) \qquad \vec{\mathbf{v}}(0) = \vec{1} \qquad \mathbf{Jac}_{\mathbf{g}} := \frac{\partial \mathbf{g}(\mathbf{z})}{\partial \mathbf{z}}$$

$$\vec{\mathbf{v}}(0) = \vec{1}$$

$$\mathbf{Jac_g} \coloneqq \frac{\partial \mathbf{g}(\mathbf{z})}{\partial \mathbf{z}}$$

$$\frac{d||\vec{\mathbf{v}}||^2}{dt} = 2\frac{\vec{\mathbf{v}}^T \mathbf{Jac_g} \vec{\mathbf{v}}}{||\vec{\mathbf{v}}||^2} ||\vec{\mathbf{v}}||^2 \qquad ||\vec{\mathbf{v}}||(0) = 1$$

$$||\vec{\mathbf{v}}||(0) = 1$$

Stretching Rate along any
$$\vec{\mathbf{u}} := \vec{\mathbf{u}}^T \mathbf{Jac_g} \vec{\mathbf{u}}$$
 $\vec{\mathbf{u}} := \frac{\vec{\mathbf{v}}(t)}{||\vec{\mathbf{v}}||}$

$$\omega_{\vec{\mathbf{u}}} := \vec{\mathbf{u}}^T \mathbf{Jac_g} \vec{\mathbf{u}}$$

$$\vec{\mathbf{u}} := \frac{\vec{\mathbf{v}}(t)}{||\vec{\mathbf{v}}||}$$

Stretching Rate and CSP decomposition (ODEs)

Stretching rate along vector field direction

TSR can be recast after CSP expansion of $J = A \wedge B$ and $g = \sum_i a_i f^i$

$$(\omega_{\tau}) = \vec{\tau}^T \cdot J_g \cdot \vec{\tau} = \frac{1}{g^2} (\vec{g}^T \cdot A \Lambda B \cdot \vec{g}) = \frac{1}{g^2} \sum_{i=1}^{N} (\vec{g}^T \cdot \vec{a}_i) \lambda_i f^i = \sum_{i=1}^{N} W_i \lambda_i$$

$$f^i = \vec{b}^i \cdot \vec{g}$$

$$\omega_{\tau} := \sum_{i=1}^{N} \overline{W}_{i} \operatorname{Sgn}(\operatorname{Re}(\lambda_{i})) |\lambda_{i}|, \qquad \overline{W}_{i} = \frac{W_{i}}{\sum_{i=1}^{N} |W_{i}|}$$

Def.#1:Accounting for angle/phase between \vec{g} and \vec{a}_i

$$W_i := \frac{f^i}{g} \frac{\vec{g}^T \cdot \vec{a}_i}{g}$$

 $\sum |W_j|$

Def.#2:Not accounting for angle/phase between \vec{g} and \vec{a}_i

$$W_i := \left(\frac{f^i}{g}\right)^2$$

TSR is a weighted sum of the eigenvalues

Participation indices related to tangential stretching rate (ODEs)

CSP PI index between reaction & mode

$$f^{i} = \mathbf{b}^{i} \cdot \mathbf{g} = \sum_{k=1,Nr} (\mathbf{b}^{i} \cdot \mathbf{S}_{k}) r^{k}$$

$$P_k^i = \frac{\left| (\mathbf{b}^i \cdot \mathbf{S}_k) r^k \right|}{\sum_{k'=1}^{N_r} \left| (\mathbf{b}^i \cdot \mathbf{S}_{k'}) r^{k'} \right|}$$

TSR PI index between mode & TSR

$$\omega_{\tau} = \sum_{i=1,N} \tilde{W_i} |\lambda_i|$$

$$P_{i}^{\omega_{ au}} = rac{\left| ilde{W}_{i}\left|\lambda_{i}
ight|_{i}
ight|}{\sum_{j=1,N}\left| ilde{W}_{j}\left|\lambda_{j}
ight|}$$

PI index between reaction & TSR

$$P_k^{\omega_\tau} = P_i^{\omega_\tau} P_k^i$$

Modes with a large $P_i^{\omega_{\tau}}$ are the most contributing to the ω_{τ} scale (energy containing)

Reactions with a large P_k^i are the most contributing to the i-th mode

Reactions with a large $P_k^{\omega_{\tau}} = P_i^{\omega_{\tau}} P_k^i$ are the most contributing to the ω_{τ} scale

Williams model

Branched-chain reactions (polynomial) system

 $R \to C$ (initiation) $R + C \to \alpha C + P$ (propagation) $C \to P$ (termination)

time

$$\frac{dx_1}{d\tau} = -x_1 - x_1 x_2$$

$$\epsilon \frac{dx_2}{d\tau} = x_1 + (\alpha - 1) x_1 x_2 - \gamma x_2$$

$$\gamma \frac{dx_3}{d\tau} = \gamma x_2 + x_1 x_2,$$

$$x_1(0) = 1, \quad x_2(0) = 0, \quad x_3(0) = 0$$

- Ignition might initiate with a pair of real positive eigenvalues
- Transition from positive to negative sign can occur while crossing a region of complex eigenvalues
- Crossing a region of complex eigenvalues can occur with a change of sign (positive to negative)
- Non-normality in subcritical regime results in overshoots of the TSR index associated with the strong curvature of the trajectory in the phase space

TSR Analysis of Autoignition

Batch Reactor Iso-choric Autoignition

 $T_0=1000K$ $p_0=1$ atm, stoichiometric, non-diluted air

black: pos eigvals

blue: first non-exhausted mode

red/yellow: pos/neg TSR green: active subspace

Methane (GRI 3.0)

Propane

n-Heptane

- Same qualitative behavior for all fuels: a pair of positive eigenvalues merge as in Williams model
- Chain branching: TSR coincides with the fast (largest) positive eigenvalue
- Thermal explosion: across the merging, TSR is contributed by some dissipative modes
- · Recombination phase: TSR tracks the driving dissipative mode
- Max value of TSR is same order [tau ~1/(2 x 105) s ~ 50 x 10-6 s = 50 microsec]
- Explosive time scales are much slower than the fastest time scales because all other faster time scales become exhausted.

Stretching Rate and CSP decomposition

Extension to PDEs

$$\begin{split} \frac{d\vec{z}}{dt} &= \vec{L}(\vec{z}) + \vec{g}(\vec{z}) & ICs + BCs \\ \omega_{\tau} &= \vec{\tau}_{g} \cdot J_{g} \cdot \vec{\tau}_{L+g} = \frac{1}{|\vec{g}| |\vec{L} + \vec{g}|} \left(\vec{g} \cdot A \Lambda B \cdot (\vec{L} + \vec{g}) \right) \\ &= \frac{1}{|\vec{g}| |\vec{L} + \vec{g}|} \sum_{i=1}^{N} \left(\vec{g} \cdot \vec{a}_{i} \right) \lambda_{i} h^{i} = \sum_{i=1}^{N} W_{i} \lambda_{i} \end{split}$$

$$(h^{i}) = \vec{b}^{i} \cdot (\vec{L} + \vec{g}) \qquad W_{i} := \frac{h^{i}(\vec{g}^{T} \cdot \vec{a}_{i})}{|\vec{g}| |\vec{L} + \vec{g}|}$$

Weights depend on transport as well as kinetics

$$\omega_{\tau} \coloneqq \sum_{i=1}^{N} \overline{W}_{i} \operatorname{Sgn}(\operatorname{Re}(\lambda_{i})) |\lambda_{i}|, \qquad \overline{W}_{i} = \frac{W_{i}}{\sum_{j=1}^{N} |W_{j}|}$$

Participation indices related to tangential stretching rate (PDEs)

CSP PI index between reaction & mode

TSR PI index between mode & TSR

$$h^{i} = \mathbf{b}^{i} \cdot (\mathbf{L} + \mathbf{g}) = \sum_{j=1,N} (\mathbf{b}^{i} \cdot \mathbf{e}_{j}) L^{j} + \sum_{k=1,Nr} (\mathbf{b}^{i} \cdot \mathbf{S}_{k}) r^{k}$$

$$P_{k}^{i} = \frac{\left| (\mathbf{b}^{i} \cdot \mathbf{S}_{k}) r^{k} \right|}{\sum_{j'=1,N} |(\mathbf{b}^{i} \cdot \mathbf{e}_{j'}) L^{j'}| + \sum_{k'=1,Nr} |(\mathbf{b}^{i} \cdot \mathbf{S}_{k'}) r^{k'}|}$$

$$P_{k}^{i} = \frac{\left| (\mathbf{b}^{i} \cdot \mathbf{e}_{j'}) L^{j'}| + \sum_{k'=1,Nr} |(\mathbf{b}^{i} \cdot \mathbf{S}_{k'}) r^{k'}|}{\sum_{j=1,N} |(\mathbf{b}^{i} \cdot \mathbf{e}_{j'}) L^{j'}| + \sum_{k'=1,Nr} |(\mathbf{b}^{i} \cdot \mathbf{S}_{k'}) r^{k'}|}$$

$$P_{k}^{i} = \frac{\left| (\mathbf{b}^{i} \cdot \mathbf{e}_{j'}) L^{j'}| + \sum_{k'=1,Nr} |(\mathbf{b}^{i} \cdot \mathbf{S}_{k'}) r^{k'}|}{\sum_{j=1,N} |(\mathbf{b}^{i} \cdot \mathbf{e}_{j'}) L^{j'}| + \sum_{k'=1,Nr} |(\mathbf{b}^{i} \cdot \mathbf{S}_{k'}) r^{k'}|}$$

PI index between reaction & TSR

$$P_k^{\omega_\tau} = P_i^{\omega_\tau} P_k^i$$

Modes with a large $P_i^{\omega_{\tau}}$ are the most contributing to the ω_{τ} scale (energy containing) Reactions with a large P_k^i are the most contributing to the i-th mode Reactions with a large $P_k^{\omega_{\tau}} = P_i^{\omega_{\tau}} P_k^i$ are the most contributing to the ω_{τ} scale

Flamelet model

$$\frac{\partial Y_{\alpha}}{\partial t} = \frac{1}{2} \chi \frac{\partial^{2} Y_{\alpha}}{\partial \xi^{2}} + \frac{\dot{\omega}_{\alpha}}{\rho}, \quad \alpha = 1, N_{s}$$

$$\frac{\partial T}{\partial t} = \frac{1}{2} \chi \left[\frac{\partial^{2} T}{\partial \xi^{2}} + \frac{1}{c_{n}} \frac{\partial c_{p}}{\partial \xi} \frac{\partial T}{\partial \xi} \right] + \frac{\dot{\omega}_{T}}{c_{n}\rho}$$

where ξ is the mixture fraction

 $\dot{\omega}_{\alpha}$, $\dot{\omega}_{T}$ are the species and temperature source terms N_{s} is the number of species in the mixture $\chi = 2D(\partial \xi / \partial x_{i})^{2}$ is the scalar dissipation rate

High Scalar Dissipation yields:

- longer ignition delay time
- faster diffusion wave
- lower max temperature at steady state

Ignition occurs only below a Limiting Scalar Dissipation (N_{ignition})

Quenching occurs only above a Limiting Scalar Dissipation $(N_{\text{quenching}})$

S-shaped temperature behavior as a function of the Damkohler number, Da:

$$Da = \frac{1}{\tau_c \chi} = \frac{1}{\tau_c D(\partial \xi / \partial x_i)^2}$$

Unsteady Flamelet Dynamics N=250s⁻¹

• ICs T(Z) = 1500 K $Y_{CH4}(Z)=Z$ $Y_{O2}(Z=0)=1-Z$

Chemical mechanism: gri3.0 (53/356)

Space resolution: 128 cells

Numerical integration: BDF implicit technique (DVODE)

Role of Scalar Dissipation in Flamelet Ignition

High Scalar Dissipation yields:

- · longer ignition delay time
- · faster diffusion wave

Ignition occurs only below a Limiting Scalar Dissipation (N_{ignition})

TSR Analysis of Ignition TSR v CEMA

CSP analysis and TSR of the ignition

- N=250s-1
- $Z=Z_{mr}=0.13$

TSR at Steady-State

Diffusion at stationary conditions drives kinetics off equilibrium

$$\vec{b}^i \cdot (\vec{L} + \vec{g}) = 0$$

$$\vec{b}^i \cdot \vec{g} = -\vec{b}^i \cdot \vec{L}$$

chemical non equilibrium
$$\omega_{\tau} \sim \sum_{act} (\vec{g} \cdot \vec{a}_{act}) (\vec{b}^{act} \cdot \vec{g}) | \lambda_{act} | = \sum_{act} (\vec{g} \cdot \vec{a}_{act}) (-\vec{b}^{act} \cdot \vec{L}) | \lambda_{act} |$$

$$\vec{b}^i \cdot \vec{g} = 0$$

$$\omega_{\tau} \sim (\vec{g} \cdot \vec{a}_{slowest})(\vec{b}^{slowest} \cdot \vec{g}) | \lambda_{slowest}|^{a}$$

CSP analysis and TSR of ignition

Mode 42 for 47%

 $\lambda_{42} \simeq -10^7$ $W_{42} \simeq 1.75 \times 10^{-2}$

TSR = -332415.6 2 Modes mostly participating to TSR

Mode 47 for 44%

 $\lambda_{47} \simeq -1.5 \ x \ 10^5$ $W_{47} \simeq 0.98$

Role of Scalar Dissipation in Flamelet Reignition/Quenching

Initial condition Steady-state solution:

$$T(Ox) = T(Fu)=300 \text{ K}$$

N=10000s⁻¹

40% increase in scalar dissipation rate for a limited time Dt

Nmax =14000 > 12000 = Nquenching

Case 1 reignition

 $Dt1 = 3.9 \ 10-6 \ s$

Case 2 quenching

 $Dt1 = 4.0 \ 10-6 \ s$

TSR Analysis of Quenching and Reignition

Z = 0.165

Semenov Model

Non-isothermal (exponential) system

$$W(T,C_f) = K(T)C_f^1$$

$$V\rho C_v T' = +VQ_F W(T,C_f) - q_{wall}(T)$$

$$VC_{f'} = -VW(T,C_f) - \dot{m}_{fuel}(C_f)$$

- Ignition might initiate with a pair of real negative eigenvalues
- Transition from positive to negative sign occur with crossing a region of complex eigenvalues
- Crossing a region of complex eigenvalues can occur with a persistent sign (positive)

→ Reignition occurs when the fast/slow positive eigenvalue merging occurs

Conclusions

TSR definition has been extended to PDEs

TSR analysis of non premixed systems (unsteady flamelet model) has been carried out for:

- 1) Ignition with different scalar dissipation rates
- 2) Quenching/Reignition bifurcative behavior

TSR allows to identify:

- 1)region in mixture fraction space of highest propensity to ignition
- 2)region in mixture fraction space of weak/none propensity to ignition
 - Kinetics proceeds only because of diffusion
- 3)time scales associated with ignition
- 4)reactions most contributing to ignition

TSR analysis showed the role of diffusion in driving the kinetics off equilibrium at steady conditions

Quenching/Reignition bifurcative behavior exhibits similarities with the Semenov model of thermal explosion

Credits

The CSP Tool Box code (written in Mathematica) used in the analysis of the **model problems** can be obtained by sending a request to mauro.valorani@uniroma1.it

The library (CSP Tool Kit, **CSPTk**) used in the analysis of the **batch reactor model** can be obtained by sending a request to mauro.valorani@uniroma1.it

The library (TChem) used in the analysis of the **batch reactor model** can be obtained by sending a request to <u>cosmin.safta@sandia.gov</u>

The library (RFlamelet) used in the analysis of the **unsteady flamelet model** has been developed by P.P.Ciottoli, P.Lapenna, F.Creta

This work is under joint development among

NTUA: D.A.Goussis for the CSP library

CRF/SANDIA: H.N.Najm, C.Safta for the TChem library

KAUST: F.Bisetti, H.Im, M.Sarathi, et al., for the CSPTk library

This work has been carried out thanks to the support of

MIUR: Italian Ministry of University and Research

KAUST: CCF Project "Extreme Combustion"

Thanks for your attention

