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Outline of the talk

We analyze ignition phenomena by resorting to the stretching rate concept introduced in the study of dynamical 
systems.  
!

We construct a Tangential Stretching Rate (TSR) parameter by combining: 
stretching rate concept  

and  
local tangent space decomposition in eigenmodes  

!
TSR identifies unambiguously the most energetic scale at a given space location and time instant  
!
TSR is a state function (TSR depends only on local mixture composition, temperature, and pressure)  
!
TSR can be readily computed during the post processing of computed reactive flow fields, both for  
1) Spatially homogeneous (auto-ignition in batch reactors) and  
2) In-homogenous systems (premixed and non premixed systems) 
!
We verified the properties of TSR with reference to hydro-carbon oxidation kinetics: 

1) Ignition in batch reactors 
2) Unsteady flamelet model  

a.Ignition 
b.Quenching 
c.Re-ignition 
!

We will discuss how to extend the definition of the TSR to PDEs models including transport as well as kinetics
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State vector z:   species concentration vector 
Vector field:       g (z ) = S r (z ) with the species reaction rate vector 
                          S :   stoichiometric coefficients matrix 
                          r  :   net reaction rates vector 
z0 :    initial concentrations vector

Consider two nearby trajectories:                                       !z = !z0 + ε

Define a scaled vector distance between the two as:          !v := lim
ε→0

!z2 −
!z1

ε
⎛
⎝⎜

⎞
⎠⎟

Vector Dynamics                      d
!v
dt

= Jacg (z)
!v(t)         !v(0) =

!
1           Jacg := ∂g(z)

∂z

Vector Norm Dynamics           d
!v 2

dt
= 2
!vTJacg

!v
!v 2

!v 2       !v (0) = 1

Stretching Rate along any !u        ω !u :=   !uTJacg
!u                 !u:=

!v(t)
!v

Stretching Rate Analysis

d!z
dt

= !g(!z )        ICs : !z(0) = !z0
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TSR can be recast after CSP expansion of J = A Λ B  and g = Σi ai fi  

TSR is a weighted sum of the eigenvalues

Stretching Rate and CSP decomposition (ODEs) 
Stretching rate along vector field direction

ωτ =
!τ T ⋅ Jg ⋅

!τ = 1
g2
!gT ⋅AΛB ⋅ !g( ) = 1

g2
!gT ⋅ !ai( )

i=1

N

∑ λi f
i = Wi

i=1

N

∑ λi

f i :=
!
bi ⋅ !g

ωτ := Wi
i=1

N

∑ Sgn(Re(λi )) λi ,     Wi =
Wi

Wj
j=1

N

∑

Wi :=
f i

g

!gT ⋅ !ai
g

Wi :=
f i

g
⎛
⎝⎜

⎞
⎠⎟

2

Def.#1:Accounting for angle/phase between 
!g   and !ai

Def.#2:Not accounting for angle/phase between 
!g   and !ai
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Modes with a large Pi
ωτ  are the most contributing to the ωτ  scale (energy containing)

Reactions with a large Pk
i  are the most contributing to the i-th mode

Reactions with a large Pk
ωτ = Pi

ωτ Pk
i   are the most contributing to the ωτ  scale

f i = bi ⋅g = (bi ⋅Sk )r
k

k=1,Nr
∑

 Pk
i =

(bi ⋅Sk )r
k

(bi ⋅Sk ' )r
k '

k '=1,Nr
∑

CSP PI index between reaction & mode TSR PI index between mode & TSR

 

   ωτ = !Wi λi
i=1,N
∑

Pi
ωτ =

!Wi λi i
!Wj λ j

j=1,N
∑

Pk
ωτ = Pi

ωτ Pk
i

PI index between reaction & TSR

Participation indices related to tangential stretching rate (ODEs)
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Williams model
 Branched-chain reactions (polynomial) system

��� ��� ��� ��� ��� ��� ���
�

�

��

��

��

��

� �

ffast� 0

��� ��� ��� ��� ���
���

���

���

���

���

��

� �

ffast� 0

• Ignition might initiate with a pair of real positive eigenvalues  

• Transition from positive to negative sign can occur while crossing a region of complex 
eigenvalues 

• Crossing a region of complex eigenvalues can occur with a change of sign (positive to 
negative) 

• Non-normality in subcritical regime results in overshoots of the TSR index associated 
with the strong curvature of the trajectory in the phase space

dx1
dτ

= −x1 − x1x2

ε
dx2
dτ

= x1 + α −1( )x1x2 − γ x2

γ dx3
dτ

= γ x2 + x1x2,

x1(0) = 1,   x2 (0) = 0,   x3(0) = 0

R → C                      (initiation)
R + C  →α  C  + P  (propagation)
C  → P                      (termination)

SIM

SIM
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Batch Reactor Iso-choric Autoignition 
T0=1000K  p0=1 atm, stoichiometric, non-diluted air

   TSR Analysis of Autoignition

n-HeptaneMethane (GRI 3.0) Propane
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Legend 
black: pos eigvals  
blue: first non-exhausted mode  
red/yellow: pos/neg TSR 
green: active subspace 

• Same qualitative behavior for all fuels: a pair of positive eigenvalues merge as in Williams model 
!

• Chain branching: TSR coincides with the fast (largest) positive eigenvalue  
• Thermal explosion: across the merging, TSR is contributed by some dissipative modes 
• Recombination phase: TSR tracks the driving dissipative mode 
!

• Max value of TSR is same order [tau ~1/(2 x 105) s ~ 50 x 10-6 s = 50 microsec] 
• Explosive time scales are much slower than the fastest time scales because all other faster time scales become exhausted.
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Weights depend on transport as well as kinetics

Stretching Rate and CSP decomposition 
Extension to PDEs

ωτ =
!τ g ⋅ Jg ⋅

!τ L+g =
1

|!g | |
!
L + !g |

!g ⋅AΛB ⋅(
!
L + !g)( )

     = 1
|!g | |
!
L + !g |

!g ⋅ !ai( )
i=1

N

∑ λih
i = Wi

i=1

N

∑ λi

hi :=
!
bi ⋅(
!
L + !g)

ωτ := Wi
i=1

N

∑ Sgn(Re(λi )) λi ,     Wi =
Wi

Wj
j=1

N

∑

d!z
dt

=
!
L(!z )+ !g(!z )        ICs + BCs

Wi :=
hi (!gT ⋅ !ai )
|!g | |
!
L + !g |



IWMRRF, Berlin, June 2015

Modes with a large Pi
ωτ  are the most contributing to the ωτ  scale (energy containing)

Reactions with a large Pk
i  are the most contributing to the i-th mode

Reactions with a large Pk
ωτ = Pi

ωτ Pk
i   are the most contributing to the ωτ  scale

TSR PI index between mode & TSR

 

   ωτ = !Wi λi
i=1,N
∑

Pi
ωτ =

!Wi λi i
!Wj λ j

j=1,N
∑

Pk
ωτ = Pi

ωτ Pk
i

PI index between reaction & TSR

Participation indices related to tangential stretching rate (PDEs)

hi = bi ⋅(L+ g) = (bi ⋅e j )L
j

j=1,N
∑ + (bi ⋅Sk )r

k

k=1,Nr
∑

 Pk
i =

(bi ⋅Sk )r
k

| (bi ⋅e j ' )L
j ' |

j '=1,N
∑ + (bi ⋅Sk ' )r

k '

k '=1,Nr
∑

Pk
i =

(bi ⋅e j )L
j

| (bi ⋅e j ' )L
j ' |

j '=1,N
∑ + (bi ⋅Sk ' )r

k '

k '=1,Nr
∑

CSP PI index between reaction & mode
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Flamelet model
∂Yα
∂t

= 1
2
χ ∂2Yα

∂ξ 2 +
!ωα

ρ
, α = 1,Ns

∂T
∂t

= 1
2
χ[∂

2T
∂ξ 2 + 1

cp

∂cp
∂ξ

∂T
∂ξ

]+ !ωT

cpρ

where ξ  is the mixture fraction
!ωα , !ωT  are the species and temperature source terms
Ns  is the number of species in the mixture
χ = 2D(∂ξ / ∂xi )

2 is the scalar dissipation rate

S-shaped temperature behavior as a 
function of the Damkohler number, Da:

Da = 1
τcχ = 1

τcD(∂ξ /∂xi )2

High Scalar Dissipation yields: 
• longer ignition delay time 
• faster diffusion wave 
• lower max temperature at steady state 
!
Ignition occurs only below a Limiting Scalar Dissipation 
(Nignition) 
Quenching occurs only above a Limiting Scalar Dissipation 
(Nquenching) 
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Unsteady Flamelet  Dynamics 
N=250s-1

• ICs T(Z) = 1500 K        YCH4(Z)=Z     YO2(Z=0)=1-Z 
!

• Chemical mechanism: gri3.0 (53/356) 
• Space resolution: 128 cells 
• Numerical integration:  BDF implicit technique (DVODE) 

t3

t2
t1

Zst =0.2

t3t2
t1

t3
t2

t1

Zst=0.2

H2O

T



N=500s-1

N= 50s-1

N=250s-1

Flame front (HCO peak)

Flame front (HCO peak)

N=0s-1

N=500s-1

N= 50s-1

N=250s-1
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Role of Scalar Dissipation in Flamelet Ignition 

High Scalar Dissipation yields: 
• longer ignition delay time 
• faster diffusion wave 
!
!
Ignition occurs only below a Limiting Scalar 
Dissipation (Nignition)

Nignition= 600 s-1
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TSR Analysis of Ignition 
TSR v CEMA

N= 50s-1 N= 250s-1 N= 500s-1

Negative TSR

LambdaPlus not defined



negative / positive  TSR 

Modes most participating to TSR 
(negative eigenvalues)

Modes most participating to TSR 
(positive eigenvalues)

Fastest active modes

Negative eigenvalues
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CSP analysis and TSR of the ignition 

• N=250s-1  
• Z=Zmr = 0.13
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TSR at Steady-State
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Diffusion at stationary conditions drives kinetics off equilibrium
!
bi ⋅(
!
L + !g) = 0       steady state

!
bi ⋅ !g = −

!
bi ⋅
!
L         chemical non equilibrium

!
bi ⋅ !g = 0                chemical equilibrium

ωτ ∼
"g ⋅ !aact( )

act
∑ (

!
bact ⋅ !g) | λact |  = !g ⋅ !aact( )

act
∑ (−

!
bact ⋅

!
L) | λact |

ωτ ∼
"g ⋅ !aslowest( )(

!
b slowest ⋅ !g) | λslowest |



negative / positive  TSR 

Modes most participating to TSR 
(negative eigenvalues)

Modes most participating to TSR 
(positive eigenvalues)

Fastest active modes

Negative eigenvalues !
Mode 42    for  47% 
λ42 ≃ -107 
W42 ≃ 1.75 x 10-2 !!
TSR = -332415.6 
2 Modes mostly participating to TSR !!
Mode 47    for  44% !
λ47 ≃ -1.5 x 105 
W47 ≃ 0.98

IWMRRF, Berlin, June 2015

CSP analysis and TSR of ignition 
MODE No         42 
 R_fwd#    3 O+H2<=>H+OH                        7.84E-02 
 R_bwd#    3 O+H2<=>H+OH                       7.82E-02 
 R_fwd#   38 H+O2<=>O+OH                       2.47E-01 
 R_bwd#   38 H+O2<=>O+OH                      2.44E-01 
 R_fwd#   84 OH+H2<=>H+H2O                  1.03E-01 
 R_bwd#   84 OH+H2<=>H+H2O                 1.03E-01 
 R_fwd#   86 2OH<=>O+H2O                       5.65E-02 
 R_bwd#   86 2OH<=>O+H2O                      5.66E-02 
MODE No          47 
 R_fwd#    3 O+H2<=>H+OH                        5.43E-02 
 R_bwd#    3 O+H2<=>H+OH                       5.41E-02 
 R_fwd#   35 H+O2+H2O<=>HO2+H2O       9.03E-02 
 R_bwd#   35 H+O2+H2O<=>HO2+H2O      5.21E-02 
 R_fwd#   85 2OH(+M)<=>H2O2(+M)           5.26E-02 
 R_fwd#   86 2OH<=>O+H2O                       7.93E-02 
 R_bwd#   86 2OH<=>O+H2O                      7.94E-02 
 R_fwd#   88 OH+HO2<=>O2+H2O             7.36E-02 
 R_bwd#   88 OH+HO2<=>O2+H2O            6.81E-02 
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Role of Scalar Dissipation in Flamelet  
Reignition/Quenching 

Initial condition  
Steady-state solution: 
!
T(Ox) = T(Fu)=300 K 
N=10000s-1 
!
40% increase in scalar dissipation rate 
for a limited time Dt 
!
Nmax =14000 > 12000 = Nquenching 
!
!
!
Case 1 reignition  
Dt1 = 3.9 10-6 s 
!
Case 2 quenching 
Dt1 = 4.0 10-6 s 

A

A=B

B

C

C

N=Nquenching

Dt
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TSR Analysis of Quenching and Reignition

A

A=B

B

C

C

N=Nquenching
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Quenching Reignition
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TSR Analysis  
Quenching and Reignition Z= 0.165
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!
!
                       

W (T ,Cf ) = K(T )Cf
1

VρCv ′T = +VQFW (T ,Cf )− qwall (T )
VC ′f = −VW (T ,Cf )− !mfuel (Cf )
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Semenov Model 
 Non-isothermal (exponential) 

system

• Ignition might initiate with a pair of real 
negative eigenvalues  

• Transition from positive to negative sign 
occur with crossing a region of complex 
eigenvalues 

• Crossing a region of complex eigenvalues 
can occur with a persistent sign (positive)

The slowest positive eigenvalue controls the 
ability to recover the conditions before the 
perturbation:   

➡ Reignition occurs when the fast/slow 
positive eigenvalue merging occurs  

➡ Otherwise, quenching occurs
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Conclusions

TSR definition has been extended to PDEs 
!
TSR analysis of non premixed systems (unsteady flamelet model) has been carried out for: 
1)Ignition with different scalar dissipation rates 
2)Quenching/Reignition bifurcative behavior  
!

TSR allows to identify: 
1)region in mixture fraction space of highest propensity to ignition 
2)region in mixture fraction space of weak/none propensity to ignition 

• Kinetics proceeds only because of diffusion 
3)time scales associated with ignition 
4)reactions most contributing to ignition 
!
TSR analysis showed the role of diffusion in driving the kinetics off equilibrium at steady 
conditions 
!
Quenching/Reignition bifurcative behavior exhibits similarities with the Semenov model of 
thermal explosion 
!
!
  
!
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Thanks for your attention


