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Abstract—Nowadays, low-dimensional manifolds defined in 
the composition / state space of a reacting flow system are 
widely used as a basic framework for model reduction. These 
can also be used for development of efficient and robust 
implementation strategies. However, the problem of existence 
of manifolds appropriate for a reduced description and their 
spatial dependence is not yet completely understood and 
investigated. Typically, the existence of manifolds of certain 
dimension is postulated and its spatial dependence is 
neglected. In the current study, problems of existence, 
identification of manifolds and their properties suitable for 
model reduction will be investigated and discussed. 

I. INTRODUCTION 
Reacting flows can be described mathematically based on 

the conservation equations for mass, momentum, energy, 
and species masses [1]. There are two main problems in 
analysis and integration of this system: first, the high 
dimensionality of the models / mechanisms of chemical 
kinetics (number of species involved in elementary 
reactions) and, second, the wide range of characteristic time 
scales of chemical kinetic processes covering time scales 
from nanoseconds to seconds. These scaling problems lead 
to the problem with the length scales as well. Due to these 
problems, the system of partial differential equations is very 
large in dimension and very stiff. 

In general, model reduction aims at finding efficient 
methods to simplify the description of the chemical kinetics 
to solve the above mentioned problems [2]. The problem of 
model reduction can be formulized rigorously by using the 
framework of low-dimensional manifolds (see e.g. [3-6]). 
The problem of model reduction then is cut down to the 
problem of definition of suitable manifolds, which describe 
the evolution of the detailed system in the physical space 
by/through the parameters of the manifold only. 

Therefore, the existence of the manifold represents a very 
important and not yet sufficiently investigated topic of 
model reduction. Typically, the manifold of low-dimension 
is postulated and the system dynamics is restricted to evolve 
within this manifold [2,3,6]. By using a very simple and 
transparent problem the question of existence is treated in 
this study. The evolution of the detailed systems solution 
profile is in the focus of the study. The mapping of the 
solutions’ scalar fields into the system state space is 
considered. 

By studying this mapping several observations 
concerning the dimension (minimal dimension) of manifolds 

and dependence of the low-dimensional manifold on the 
spatial variable can be drawn. First of all, the minimal 
dimension can be investigated, then this can be used to 
verify the main crucial assumptions of the manifold’s spatial 
independence. 

II. PROBLEM STATEMENT  
It is evident any scalar field of a reacting flow in d-

dimensional physical space with spatial coordinates r and 
time t: ( )tr,ψψ =  leads to a temporarily varying manifold in 
composition space, which has a dimension of at most d. 
These manifolds evolve in time, and though the dimension 
is limited, but they might become arbitrarily complicated 
both in physical space and in the system state space. 
Nevertheless, if manifolds of a given dimension can be 
found, which represent the evolving manifolds with a good 
accuracy, then these manifolds can be used to approximate 
the system’s dynamics. Based on this observation a strategy 
to study the properties of the low-dimensional manifolds 
used for model reduction is to investigate how the dynamics 
of the detailed systems’ manifold evolves in time. In this 
way the properties of the manifold (of the reduced model) 
can be studied, because the evolution of the solution 
manifolds should themselves be embedded in the reduced 
manifold. In a previous study (see [7]) the physical 
boundary of the solution manifold (parametrized by spatial 
coordinates and time and represented in the state space) and 
the boundary of the low-dimensional manifold were 
discussed. In the current study, however, the evolution of the 
system solution profiles is suggested to be used to verify 
both the existence of the manifold of certain dimension as 
well as the spatial dependence of the manifold. 

III. TOY EXAMPLE 
The proposed strategy can be visualized and illustrated 

by a simple 3D toy system ( 3=n ) in an artificial one-
dimensional ( 1=d ) physical space. This system models a 
free reaction wave propagation problem in the so-called 
Lagrangian coordinates, i.e. the advection term can be 
excluded. 3D Michaelis-Menten model [4] was extended to 
include the diffusion. The reaction-diffusion system has the 
following chemical source term: 

( )

( ) ( )⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−+−+−−−+−

−+−

−−−+−

=

)1(/)1(1/1
)1(/
)1(1

24232323312

242323

23131

ψψψµψµψψψ

ψψψ

ψµψψψ

LLLL
LLL

L
F

 



The diffusion is modelled by the standard Laplace 
operator ( )321 ,, ψψψ ΔΔΔd , where d=0.001 is taken for 
dimensionless diffusion coefficient and 

1,1.0,05.0,1,99.0 4321 ===== µLLLL  are dimensionless kinetic 
parameters. This simple example can be used to show 
clearly how the solution manifold (1D in this case) evolves 
in time, and how the physical dimension can be related to 
the manifolds dimension. 

IV. RESULTS AND DISCUSSION 
Figure 1 (left) shows the homogeneous system solution 

trajectory (by the red line) and the 2D slow manifold 
generated for the homogenous (ODEs) system only. As 
typical for chemical kinetic systems the solution trajectory 
evolves towards the 2D slow manifold and then stays in its 
neighborhood and evolves to the equilibrium. In the Figure 1 
(middle) the PDE system solution profiles are shown 
starting from the straight line (black curve) that joins the 
initial (2,0,1) and the equilibrium (0,0.73,0.73) states, which has 
been taken as the initial state. Then, several snapshots of the 
solution profiles in the state space are shown by blue, cyan, 
magenta and red lines, which finally converges to the 1D 
stationary solution profile shown by the black dashed line. 
The figure on the right shows the transient profiles with 
respect to the 2D slow manifold for homogenous system 
from another point of view. 

It is clear that systems close to the stationary state can be 
well described by the 1D stationary manifold (this in fact the 
basis of flamelet models). However, the evolution of the 1D 
initial manifold towards this stationary solution generates 
itself a 2-dimensional manifold. Such a two-dimensional 
manifold is in the focus of the study and might describe the 
systems dynamics better especially for the states away from 
the stationary states. 

Based on these observations several properties of 
approximating manifolds (like reaction-diffusion manifolds) 
can be investigated, such as: 
• The attractive properties of low-dimensional manifolds 
• The ability of low-dimensional manifolds to describe 

transient processes 
• The necessary dimension of a low-dimensional 

manifold such that it embeds the solution manifolds. 

In this study we show how the information about the 
evolution of detailed systems solution in the compositions 
space can be used to find the necessary dimension of the 
manifold. Furthermore, the question of a gradient estimate, 
which depends only on the location in the state space and 
not on the location in physical space needed for REDIM 
implementation. This question can also be addressed based 
on an investigation of the detailed system’s evolution 
profiles. 

V. CONCLUSION 
In spite of the progress made in the development of the 

manifolds based reduction approaches, there are several very 
difficult and complicated issues concerning the spatial 
dependence of these manifold. The simplest and most 
obvious way to solve this problem is to postulate “complete” 
independence of the manifold on the spatial phenomena. In 
this study, however, we show how these problems can be 
handled in a more sophisticated way by looking at the 
evolution of detailed system solution profiles. 
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Fig. 1 Left: Plot of the homogenous system solution in state space (red line), surface shows the 2D slow manifold for homogenous system only; Middle: 
Transient solution profiles (1D in space) starting from the black initial profile, dashed line shows the stationary solution profile. Right: Two plots together 
are show here. 



Physically-Derived Reduced-Order Manifolds for
Multi-Modal Turbulent Combustion
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Abstract— A new turbulent combustion model for LES has
been developed that breaks the inherent trade-off between
generality and computational cost in existing turbulent com-
bustion models. The new model relies on a more general low-
dimensional manifold to describe combusiton processes that
does not a priori limit combustion to a single, local asymptotic
mode. The model is constructed by first assuming that all
(adiabatic, isobaric, two-stream) combustion processes can be
described on a two-dimensional manifold defined by a mixture
fraction and a generalized progress variable. A transformation
of the governing equations is performed into these coordinates
to describe the evolution of the thermochemical state on the
manifold, which also leads to an explicit definition for the
generalized progress variable. This two-dimensional space is
shown to recover the three asymptotic modes of combustion
under appropriate limits. Implementation challenges with LES
are highlighted.

I. INTRODUCTION

Turbulent combustion models for Large Eddy Simulation
(LES) can divided into two distinct classes of models. In the
first class of models, no a priori assumption is made about
the underlying combustion processes such as Transported
Probability Density Function (TPDF) [1] and the Linear
Eddy Model (LEM) [2]. These models have the potential
to be very general, but the computational cost is high and
scales with the number of species considered. In the second
class of models, a priori assumptions are made about the
underlying combustion processes, restricting the combustion
processes to some low-dimensional or reduced-order mani-
fold that can be described by a number of variables much
less than the total number of chemical species, resulting
in a significant reduction in computational cost. These
reduced-order manifolds are often derived directly from
physical arguments, including “flamelet”-like models [3],
[4] and Conditional Moment Closure [5], but usually restrict
combustion processes to a single, local asymptotic mode.

Various attempts have been made to generalize
physically-derived reduced-order manifolds to accommo-
date more complex multi-modal combustion processes.
Knudsen and Pitsch [6] derived a set of governing equations
for a two-dimensional manifold over mixture fraction Z,
constant for premixed combustion, and a flame index Λ,
constant for nonpremixed combustion. The goal of that
work was not to model multi-modal combustion processes
directly but, instead, use the balance of terms in the multi-
dimensional manifold equation to develop a “regime in-

dex” to distinguish between locally premixed and locally
nonpremixed combustion. Nguyen et al. [7] proposed a
similar set of two-dimensional manifold equations over
the mixture fraction Z and an undefined progress variable
YC that is limited to some linear combination of species
mass fractions. The shortcoming of this formulation is that
the progress variable YC is not necessarily constant for
nonpremixed combustion, so the equations do not simplify
to the classical nonpremixed equations in mixture fraction
space in that limit. While the authors did solve the two-
dimensional manifold equations, the model has not been
applied as a turbulent combustion model in LES.

The goals of this work are three-fold. First, a new, con-
sistent, physically-derived reduced-order manifold approach
is developed for multi-modal turbulent combustion. The
manifold will be defined over a mixture fraction Z and an
explicitly defined generalized progress variable Λ. Second,
the model will be shown to recover the asymptotic limits
of nonpremixed combustion, premixed combustion, and
homogeneous combustion in the appropriate limits. Finally,
strategies for implementation within LES are discussed.

II. MODEL DETAILS

To describe multi-modal combustion (for a [effectively]
two-stream problem), two manifold coordinates are re-
quired. The first coordinate is the mixture fraction Z, de-
fined by its transport equation to be a conserved scalar with
unity Lewis number [8]. The mixture fraction is defined to
be zero in the oxidizer stream and unity in the fuel stream.
The second coordinate is a generalized progress variable Λ
whose explicit definition will be left open at this point, but
it will be defined to be independent of the mixture fraction
and to to be zero for an unburned gas mixture and unity
at equilibrium. Note that this generalized progress variable
cannot be defined to be any [linear combination of] species
mass fraction, for this would introduce a dependence on
the mixture fraction into the definition of the generalized
progress variable. The working hypothesis of the two-
dimensional manifold then is that all (isobaric, adiabatic,
two-stream) combustion processes can be described on the
unit square, varying between oxidizer and fuel and between
unburned and equilibrium.

To obtain the manifold evolution equations, a coordinate
transformation is performed from physical space and time



to the manifold coordinates, that is, (t, xj) → (Z,Λ). For
brevity, the details of the coordinate transformation are not
included here, but the resulting manifold equation for the
species mass fraction, assuming unity Lewis numbers, is
given by
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The problem with the above equation is that the evolution

of Λ in space and time remains, so the equation is unclosed.
Therefore, an explicit definition for the generalized progress
variable Λ is required and is obtained by choosing a
reference species that will define Λ. The reference species
should be “progress variable like” and evolve monotonically
between unburned and equilibrium. Rearranging Eq. 1 for
the reference species results in an explicit definition for the
generalized progress variable Λ:
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+ ẇk

)]
R

,

(2)

where the subscript R refers to the terms evaluated for the
reference species and has been used to define a source term
for the generalized progress variable Λ.

With this definition for Λ, the species evolution on the
manifold is then given by
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Analogous equations can be derived for the temperature or
without the assumption of unity Lewis numbers.

III. RECOVERY OF ASYMPTOTIC LIMITS

Premixed Combustion: In the premixed limit, gradients of
mixture fraction vanish ∇Z → 0. For the species evolution
on the manifold, Eq. 3 simplifies to

∂Yk
∂Λ

ẇΛ =
χΛΛ

2

∂2Yk
∂Λ2

+ ẇk . (4)

The same equation would be obtained by considering a
single-variable manifold coordinate transformation in Λ.

Nonpremixed Combustion: In the nonpremixed limit, gra-
dients of the generalized progress variable vanish ∇Λ→ 0.
For the species evolution on the manifold, Eq. 3 simplifies
to

∂Yk
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ẇΛ =
χZZ

2

∂2Yk
∂Z2

+ ẇk . (5)

The term on the left-hand-side is a time-like term that
describes the evolution of the nonpremixed combustion
process between its steady “flamelet” limits: toward the
stable burning (upper) and non-burning (lower) branches

and away from the unstable (middle) branch of the S-shaped
curve (i.e., extinction and reignition processes).

Homogeneous Combustion: In the homogeneous limit,
gradients of both the mixture fraction and the generalized
progress variable vanish. For the species evolution on the
manifold, Eq. 3 simplifies to

∂Yk
∂Λ

ẇΛ = ẇk . (6)

The role of the left-hand-side as a time-like term in
nonpremixed and homogenous combusiton is even more
apparent. In the homogeneous limit during autoignition,
Λ = 0 corresponds to t = 0, and Λ = 1 corresponds to
t→∞.

IV. IMPLEMENTATION WITH LES
A new shared-memory parallel solver, Physically-Derived

Reduced-Order Manifolds (PDRs), has been developed to
solve the two-dimensional manifold equations. The equilib-
rium boundary condition is computed using CEQ [9]. The
discretized non-linear equations are solved using the SUN-
DIALS package [10]. Example solutions are not included
in this abstract for brevity but will be shown to describe a
wide range of combustion pheneomena.

The major impediment to the use of this two-dimensional
manifold as a turbulent combustion model in LES is the
sheer number of database dimensions that is required for
a priori calculation of the manifold: the mixture fraction
Z, the generalized progress variables Λ, and three scalar
dissipation rates. Pre-computation of the manifold would
require a five-dimensional database, which is just possible
with node memory limitations. As an alternative, rather than
pre-computing the manifold, new capability is being devel-
oped to solve the manifold equations ‘on-the-fly’ during a
LES calculation and tabulating the manifold solutions using
In-Situ Adaptive Tabulation (ISAT) [11], which would also
allow for the consideration of additional physics including
heat losses, pressure/energy variation, multi-component ox-
idizers/fuels, inhomogeneous oxidizers/fuels, all of which
require additional database dimensions.
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Reduced Manifolds and Trajectory Curvature
Joseph M. Powers∗,

∗University of Notre Dame, Department of Aerospace and Mechanical Engineering, Notre Dame, Indiana, USA

Abstract— It is shown by counter-example that slow in-
variant manifolds are not associated with points of vanishing
solution trajectory curvature. However, vanishing trajectory
curvature may be associated with an intrinsic low-dimensional
manifold, which approaches a slow invariant manifold as
stiffness increases.

I. INTRODUCTION

The identification of slow invariant manifolds associated
with nonlinear dynamical systems that describe spatially
homogeneous chemical kinetics is a key problem of model
reduction for reactive systems. See [1], [2] and references
therein for background. In short, the phase space in which
non-reduced reactive systems evolves is typically of high
dimension, and manifold methods identify manifolds of
lower dimension to which the system is attracted at long
time. Projection of high-dimensional trajectories onto lower
dimensional manifolds can potentially reduce the stiffness
of the system while maintaining high fidelity to the un-
derlying high-dimensional system. This can enable more
computationally efficient calculation of reaction dynamics.

Ginoux and co-workers [3], [4] have stated that
one can identify slow invariant manifolds (SIMs) of
two-dimensional dynamical systems by identifying zero-
curvature manifolds (ZCMs): those points within the phase
space where the curvature of solution trajectories vanishes.
Additional development is in [5]. It will be shown here that
this criterion fails for the well known Davis-Skodje (DS) [6]
system. Instead, the ZCM is found to identify the so-called
intrinsic low-dimensional manifold (ILDM) [7].

II. GENERAL ANALYSIS

We summarize some concepts discussed in detail in [1]-
[7]. Spatially homogeneous chemical kinetics can be cast
as dynamical system of the form

dx

dt
= v(x). (1)

Here, we consider x to be related to the species concentra-
tion and think of it as a position in phase space. We consider
v to be the constitutive equation for chemical kinetics, and
think of it as a velocity in phase space. Local dynamics
may often be analyzed with the aid of the Jacobian matrix
J which is the Fréchet derivative of v with respect to x:

J =
∂v

∂x
. (2)

It is the reciprocals of the real parts of the eigenvalues of J
that give the local time scales of reaction. The acceleration
a in phase space is given by

a(x) =
∂v

∂x

dx

dt
= J · v. (3)

The curvature κ of any trajectory is given by

κ =
||a× v||
||v||3

. (4)

The curvature κ vanishes at points x for which the velocity
v is aligned with the acceleration a.

III. ANALYSIS OF THE DS SYSTEM

A. Exact Solution

Consider the DS system, taking x > 0, γ > 1:

dx

dt
= −x, x(0) = x0, (5)

dy

dt
= −γy + (γ − 1)x+ γx2

(1 + x)2
, y(0) = y0. (6)

The exact solution is

x(t) = x0e
−t, (7)

y(t) =
x0e

−t

1 + x0e−t
+

(
y0 −

x0
1 + x0

)
e−γt. (8)

Eliminating t, the exact solution in the phase plane is

y(x) =
x

1 + x
+

(
y0 −

x0
1 + x0

)(
x

x0

)γ
. (9)

As γ > 1, the curve approached from arbitrary initial
conditions is

ySIM =
x

1 + x
. (10)

Thus, ySIM captures the slow dynamics of the system.
Moreover, if the initial conditions are such that they lie on
ySIM (x): y0 = x0/(1 + x0), then ySIM is itself a solution
trajectory, and thus an invariant manifold.

The exact expressions for J and a are

J =

(
−1 0

γ−1+(γ+1)x
(1+x)3 −γ

)
, (11)

a =

(
x

γ2y − x(γ2(x+1)2+x−1)
(x+1)3

)
. (12)



The eigenvalues of J are λ1 = −1, λ2 = −γ. The stiffness
ratio is |λ2/λ1| = γ. Stiffness increases as γ increases. The
unique finite fixed point (0, 0) is guaranteed stable because
both eigenvalues are everywhere negative, including in the
neighborhood of the fixed point.

B. ILDM

As derived in [7] and shown in [2], [6], the ILDM is
found by projecting Eqs. (5,6) onto a basis formed from fast
and slow eigenmodes of J and equilibrating the differential
equation associated with the fastest time scale. This yields
an algebraic equation for the ILDM; solving this for y and
simplifying, the ILDM for the DS system is given by

yILDM =
x

x+ 1︸ ︷︷ ︸
ySIM

+
2x2

γ(γ − 1)(1 + x)3
. (13)

Obviously the ILDM and SIM are different, but approach
each other as stiffness γ increases.

C. ZCM

The ZCM is seen from Eq. (4) to exist when the velocity
and acceleration vectors are parallel:

a× v = 0. (14)

Use Eqs. (5,6) to form v and Eq. (12) for a, substitute into
Eq. (14), and solve to find the ZCM:

yZCM =
x

x+ 1︸ ︷︷ ︸
ySIM

+
2x2

γ(γ − 1)(1 + x)3
. (15)

The ZCM is exactly the ILDM and is not the SIM. The ZCM
is not a solution trajectory, so it is not an invariant manifold.
Note that the ZCM itself has curvature. Solution trajectories
possess no curvature when they intersect the ZCM. The
ZCM approaches the SIM as stiffness γ increases.

Figure 1 shows a phase plane for the DS system with
moderate stiffness, γ = 3. Included are the trajectory y(x)
corresponding to x(0) = 1, y(0) = 3/5, yZCM = yILDM ,
and ySIM . Also shown are the vector fields of v and a.
The trajectory crosses through yZCM at a point where the
trajectory itself has no curvature, with v parallel to a. The
trajectory then approaches ySIM .

D. Quantification at a point

Still taking γ = 3, consider the point x = 1. At that point
the reduction that is Eq. (10) recommends for us to project
to the SIM, yielding ySIM = 1/2. At this point, the original
Eqs. (5,6) tell us dx/dt = −1 and dy/dt = −1/4. Dividing,
we see at that this point Eqs. (5,6) tell us dy/dx = 1/4.
We can differentiate directly Eq. (10) for the SIM and get

dySIM
dx

=
1

(1 + x)2
,

dySIM
dx

∣∣∣∣
x=1

=
1

4
. (16)

x

y

y
SIM

y
ZCM

=y
ILDM

y(x) trajectory with
x(0)=1, y(0)=3/5

Fig. 1. Trajectory, ZCM, ILDM, SIM, v, and a for DS system with
γ = 3.

Thus the slope of the SIM is identical to that predicted by
Eqs. (5,6). This is consistent with the SIM also being a
trajectory, necessary for it to be an invariant manifold.

At the same point x = 1, the ZCM, Eq. (15) recommends
we project to yZCM = 13/24. At this point, the original
Eqs. (5,6) tell us dx/dt = −1 and dy/dt = −3/8. Dividing,
we see at that this point Eqs. (5,6) tell us dy/dx = 3/8.
We can differentiate directly Eq. (15) for the ZCM and get

dyZCM
dx

=
1

(1 + x)2
+

(x− 2)x

3(1 + x)4
,

dyZCM
dx

∣∣∣∣
x=1

=
13

48
.

(17)

The slope of the ZCM is not predicted by Eqs. (5,6).

IV. CONCLUSION

The ZCM is an ILDM but not a SIM. The ZCM and
ILDM better approximate the SIM as stiffness increases.
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An online slow manifold approach for efficient
optimal control of multiple time-scale kinetics
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Abstract— Chemical reactions modeled by ordinary differ-
ential equations are finite-dimensional dissipative dynamical
systems with multiple time-scales. They are numerically hard
to tackle – especially when they enter an optimal control
problem as “infinite-dimensional” constraints. Since discretiza-
tion of such problems usually results in high-dimensional
nonlinear problems, model (order) reduction via slow manifold
computation seems to be an attractive approach. We discuss
the use of slow manifold computation methods in order to
solve optimal control problems more efficiently having real-
time applications in view.

I. INTRODUCTION

Chemical kinetics with multiple time scales and their con-
trol involve highly stiff and often high-dimensional ordinary
differential equations (ODE). This poses hard challenges
to the numerical solution and is the reason why model
reduction methods are considered. The dynamics can be
simplified by focusing on the long time behavior of such
systems (leaving fast transients unresolved) and calculating
fast modes as functions of the slow ones. Ideally this leads
to low dimensional manifolds in high-dimensional state
space. In the special case of singularly perturbed system,
they are understood quite well and called slow invariant
manifolds.

An open problem is how the slow manifolds can be used
to simplify the solution of optimal control problems (OCP)
that involve multiple time scale ODE constraints.

II. SLOW MANIFOLD COMPUTATION

In dissipative dynamical systems geometrically the bund-
ling of trajectories (on a fast time scale) to low-dimensional
manifolds is observed. Once trajectories reach the neighbor-
hood of the slow manifold, they will evolve slowly and will
never leave this manifold neighborhood. Thus, this manifold
is called slow invariant attracting manifold (SIAM).

The aim of slow manifold computation techniques is
to approximately compute the SIAM as the graph of a
function of only a few selected species (so called reaction
progress variables). Thus, manifold-based model reduction
generate a function h : Rns → Rnf (ns is the number
of slow variables resp. reaction progress variables and
nf is the number of fast variables), such that

(
zs, h(zs)

)
approximates points of the SIAM.

In order to investigate optimal control benchmark prob-

lems, we consider singularly perturbed systems, i.e. systems
where the ODE can be transformed into the following form:

żs(t) = fs(zs(t), zf (t)) (1a)
εżf (t) = ff (zs(t), zf (t)). (1b)

Two methods relevant in our context for the approximative
calculation of the SIAM are briefly reviewed in the follow-
ing subsections.

A. Zero Derivative Principle

The main idea of the Zero Derivative Principle (ZDP)
[1],[6] for model reduction of singularly perturbed systems
is to identify for given values of the slow variables z∗s a
point z∗f such that the higher-order time derivatives of fast
components vanish, i.e

dmff (z
∗
s , z
∗
f )

dtm
= 0 for a given m ∈ N. (2)

B. Method of Lebiedz and Unger

Another approach proposed by Lebiedz and Unger [4] is
motivated geometrically: Among arbitrary trajectories of (1)
for which the slow components end within the time t1− t0
in the state z∗s the corresponding part of the trajectory on the
SIAM is characterized by the smallest curvature (see also
[2],[3]). This motivates optimization problem (3) which is
a variational boundary value problem (BVP).

min
z(·)=

(
zs(·),zf (·)

) ∥∥z̈(t0)∥∥22 (3a)

s.t. żs = fs
(
zs, zf

)
, t ∈ [t0, t1] (3b)

εżf = ff
(
zs, zf

)
, t ∈ [t0, t1] (3c)

zs(t1) = z∗s . (3d)

In our application context we also use the local reformula-
tion of problem (3), where t0 = t1.

III. OPTIMAL CONTROL

One of our research interests is to solve optimal control
problems involving multiple time scales as it appears fre-
quently e.g. in the field of chemical engineering. Thus, we



consider the following (typically high-dimensional) OCP:

min
zs,zf ,u

∫ T

0

L(zs, zf , u) dt (4a)

subject to żs = fs(zs, zf , u) (4b)
εżf = ff (zs, zf , u) (4c)

zs(0) = z(0)s , zf (0) = z
(0)
f (4d)

Applying the model reduction methods presented in the
last section and assuming the control u to be a slow variable,
yields the lower dimensional problem (cf. [5])

min
zs,u

∫ T

0

L(zs, h(zs, u), u) dt (5a)

subject to żs = fs(zs, h(zs, u), u) (5b)

zs(0) = z(0)s . (5c)

This systems has the advantage, that it has significantly
less optimization variables and the ODE (5) is less stiff,
which makes it solvable by fast explicit numerical integra-
tors compared to implicit methods required for stiff ODE.
However, numerical solution methods for OCPs like the
multiple shooting method need repeated evaluation of the
function h as well as its partial derivatives hzs and hu.

Therefore, it would be beneficial to combine the calcu-
lation of the SIM and the optimal control problem. This is
obviously possible, if the approximation h(zs) of the SIM
can be formulated as a (nonlinear) root finding problem
r(zs, zf , u) = 0, e.g. with the ZDP method. Thus, we
propose to solve the following OCP instead of (5):

min
zs,zf ,u

∫ T

0

L(zs, zf , u) dt (6a)

subject to żs = fs(zs, zf , u) (6b)
0 = r(zs, zf , u) (6c)

zs(0) = z(0)s . (6d)

IV. APPLICATION TO CHEMICAL REACTIONS

We apply the ideas presented in the last sections to a
benchmark OCP motivated by the Michaelis-Menten-Henri
mechanism

S + E � SE → P + E, (7)

modeling the reaction of substrate S to a product P via
a substrate-enzyme-complex SE with the help of enzyme
E. Simplifying the ODE given by (7) and introducing an
artificial objective function yields OCP (8).

min
zs,zf ,u

∫ 5

0

−50zf + u2 dt (8a)

s.t.
żs = −zs +(zs + 0.5) zf + u,

εżf = zs − (zs + 1) zf ,
zs(0) = 1,

(8b)

0 1 2 3 4 5

time t

0

1

2

3

4

5

6

7

zs
zf
u

Fig. 1. Numerical Solution of (8).

where the control u(t) ∈ [0, 10] represents the possibility
to add some substrate (corresponds to variable zs) to the
system and ε describes the time-scale separation (between
the time evolution of zs and zf ).

Figure 1 shows the results of the numerical solution of (8)
using the multiple-shooting scheme with an implicit Radau-
2A integrator. If we refer to the solution of the proposed
OCP (6) as (zapp

s , zapp
f , uapp) and to the solution of (8) as

(zorig
s , zorig

f , uorig), then it holds

max
{
||zorig

s − zapp
s ||∞, ||zorig

f − zapp
f ||∞, ||uorig − uapp||∞

}
= ||zorig

s − zapp
s ||∞ ≈ 0.05, (9)

which gives a relative error of ≈ 0.2% for both objective
functional value and ||zorig

s − zapp
s ||∞/||zorig

s ||∞. Although,
the proposed method uses exactly as many variables than
the original OCP, we observe a speed up of factor 4 for
solving OCP (8) due to the use of an explicit integration
scheme.
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Abstract— When studying big molecules, a notorious issue
in using molecular dynamics simulators is often the time scale
separation. While most of the phenomena of interest occurs on
pretty large timescales (e.g. from millisecond to minutes), typi-
cal current computational capabilities only allow us to explore
much shorter dynamics, with the system configuration trapped
within small irrelevant regions of the configuration space. In
this work, we report the latest developments on iMapD, a
method that has been recently proposed to help alleviate the
above computational issue. To this end, we show an effective
approach to gradually construct low-dimensional effective free
energy surfaces in the configuration space and, concurrently,
exploit their smoothness (and slowness) to rapidly access new
unexplored system configurations.

I. INTRODUCTION

When using atomistic models, a typical behavior of
complex systems can be trapping into small regions of the
configuration space for very long time before the transi-
tioning to a different (and interesting) system conformation
happens.

We have recently proposed the iMapD method [1], [2]
with the purpose of enhancing the sampling of stochastic
solvers among which, interestingly, those that are used for
molecular dynamics. The very basic idea of our approach
consists in letting the solver explore a neighborhood of the
current metastable state in order to collect enough samples
to learn the local geometry of the low-dimensional effective
free energy surface - FES. To this end, the FES geometry
can be revealed automatically using machine learning algo-
rithms, such as Diffusion Maps - DMAP [3], [4] as done in
our work. First of all, the above step enables us to establish a
low-dimensional description of the problem in terms of only
a few meaningful diffusion coordinates. Moreover, with the
help of appropriate algorithms [5], the edge of the so far
explored FES portion can be identifies (conveniently in
the low-dimensional space). In the attempt of finding new
conformations of the system (i.e. new metastable states), in
the spirit of the ”equation-free approach [6], [7], samples
at the boundary are projected outwards with respect to the
already known phase-space region. Here, relying upon the
smoothness of the FES surface, we are able to force the
simulator to restart in regions that are likely sufficiently
far from the already explored ones. Clearly, the above
procedure can be iterated several times and, according to

our experience and numerical results, it can potentially lead
to a saving of several orders of magnitudes in computational
time (as compared to the original simulation).

The most interesting features of iMapD are: i) it does not
require prior knowledge on the investigated system (e.g. in
terms of the suitable collective variables); ii) it does not
perturb significantly the system as no external forces are
applied and most of the simulation runs unbiased. In this
work, we will present the implementation details of iMapD
and, with the help of a few examples, we will critically
discuss both challenges and opportunities of the method.
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Asymptotic analysis of a pharmacokinetics model
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Abstract— The dynamics of a multiscale pharmacokinetics
model are investigated. In particular, the influence of the
reaction rate constant ktp of a reaction involving two forms of
the drug, CT → C, is explored. The solution of this model is
immediately directed on a manifold, on which increasing values
of ktp generate the expected behavior; i.e., larger concentra-
tions of C. However, when further in time the dimensions of
the manifold change, this behavior is reversed. By employing
the CSP methodology, it is shown that this unexpected feature
is the result of conflicting fast and slow dynamics.

I. INTRODUCTION

One major challenge in the design of drugs is that a
certain compound might not be the appropriate for all
patient. Genetic or epigenetic factors, life style, diet, sex,
age, weight and other such factors might cause variations
in the response to drug treatment [1]. The degree to which
such factors affect the action of a given drug is a subject
of current research.

These issues are currently studied on the basis of
pharmacology-based mathematical models, among them the
target-mediated drug disposition models. These models sim-
ulate the phenomenon in which a drug binds with high
affinity to its pharmacological target site (such as a recep-
tor), to such an extent that this affects its pharmacokinetic
characteristics. TMDD models are often over-parameterized
and their parameters are difficult to estimate based on
available data [2], [3]. Model reduction methodologies are
thus employed in order to identify the most influential
components of the model.

Here, the results of the analysis of a popular TMDD
model will be reported. The discussion will focus on an
unexpected behavior, which highlights the significance of
the fast/slow dynamics.

II. THE PHARMACOKINETICS MODEL

The TMDD model considered here describes the inter-
action of a drug with its target, the formation of their
biding and its degradation. This model, shown in the left
panel of Fig. 1 is a three-compartment pharmacokinetic
model, the central compartment of which represents the
blood plasma and involves N=5 variables [4]. Drug in the
central compartment (C) binds (reaction 5) to free receptors
(R), in order to form a drug receptor complex (RC). The
complex may dissociate at the first-order rate (reaction
6) or be internalized and degraded by the first-order rate
process of endocytosis (reaction 10). Free drug can also
be directly eliminated at a first-order rate (reaction 3) or
be distributed to a nonspecific tissue-binding site (CT ) by
first- order processes (reactions 7 and 4). Free receptor can
be synthesized at a zero-order rate (reaction 8) and degraded
at a first-order rate (reaction 9). Regarding the way the free
drug is administrated to the central compartment, there are
three distinct cases. First, the free drug can be transferred
from another compartment, the depot compartment. There,
the concentration of the drug is referred by the variable Cd

and through reaction 1 it can be transferred in the central
compartment. Alternatively, drug can be administered by
intravenous bolus (a relatively large dose of medication
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Fig. 1. Left: A schematic representation of the pharmacokinetic mechanism. Right: The multiscale character of the TMDD model dots on the trajectories
denote equidistant intervals of time.
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Fig. 2. The evolution of the fast amplitudes after one (solid) and two (dashed) br-refinements, for M=2 (left) and M=3 (right).

administered into a vein) in a short period a time-depending
function, which is represented by the function In(t). Finally,
drug can be administered by a subcutaneous dose, repre-
sented by a non-zero initial value of the free drug in the
central compartment.

This model is characterised by multiple time scales, as
suggested by the right panel of Fig. 1, where the projection
of the trajectory on the C − CT plane is displayed. A
more detailed picture of the multiscale character of model
emerges from the evolution of the fast amplitudes for the
M=2 and M=3 cases, shown in Fig. 2. These are the first M
amplitudes, after casting the governing system in the CSP
form dy/dt = a1f

1+· · ·+a5f
5 [5]. The amplitudes, shown

in Fig. 2 are computed after one and two br-refinements.
Figure 2 shows that the solution initially evolves on a

3-dim. manifold (N-M) and then on a 2-dim. one. Figure
3 shows the temporal evolution of C and CT for two
values of the rate constant ktp of the 7th reaction, which
involves two forms of the drug, CT → C. It is shown that
when the solution evolves on the M=2 manifold, increasing
values of ktp generates the expected results; i.e. larger
values of C. However, when the solution evolves on the
M=3 manifold this is reversed; i.e., smaller values of C are
obtained.

III. RESULTS

As it is suggested by the pharmacokinetics mechanism
displayed in the left panel of Fig. 1, the dependence of the

drug concentration in the central compartment, C, to the
rate of the 7th reaction, r7, can be schematically depicted
as dC/dt = g(+r7); i.e., the 7th reaction tends to generate
C. The same functional form applies when the trajectory
evolves on the M=2 manifold. However, when the solution
evolves on the M=3 manifold this form changes to dC/dt =
g(−r7); i.e., the 7th reaction tends to deplete C. It will be
shown that this reversal is due to the additional constraint
that accompanies the transition from M=2 to M=3.
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Abstract— The Rate-Controlled Constrained-Equilibrium
(RCCE) model reduction scheme for chemical kinetics pro-
vides acceptable accuracies with a number of differential
equations much lower than the number of species in the
underlying Detailed Kinetic Model (DKM). It was originally
proposed by James C. Keck (see [1-3] and references therein).
To yield good approximations the method requires accurate
identification of the rate controlling constraints. Until recently,
a drawback of the RCCE scheme has been the absence of a
fully automatable and systematic procedure to identify the
most effective constraints for a given range of thermodynamic
conditions and a required level of approximation. In a recent
paper [4], we have proposed a new methodology for such
identification based on a simple algebraic analysis of the
results of a preliminary simulation of the full underlying DKM,
focusing on the behavior of the degrees of disequilibrium (DoD)
of the individual chemical reactions. The new methodology is
based on computing an Approximate Singular Value Decom-
position of the Actual Degrees of Disequilibrium (ASVDADD)
obtained as functions of time in the probe DKM simulation.
The procedure identifies a low dimensional subspace in DoD
space, from which the actual DoD traces do not depart beyond
a fixed distance related to the first neglected singular value
of the matrix of DoD traces. The effectiveness and robustness
of the method has been demonstrated [4-6] for various cases
of a very rapid supersonic nozzle expansion of the products
of hydrogen and methane oxycombustion and for the case of
methane/oxygen ignition.

The RCCE method models the local non-equilibrium
states as partially equilibrated states with the local com-
position XXXCE = Nj/

∑nsp

k=1Nk that minimizes the Gibbs
free energy subject to: (1) the local values of tempera-
ture T , pressure p, molar amounts of elements NEL

i =∑nsp

j=1 a
EL
ij Nj (where aEL

ij represents the number of atoms of
element i in a molecule of species j) and (2) the local values
of a set of nc slowly varying and, hence, rate-controlling
(RC) constraints given by linear combinations of the molar
amounts, ci(NNN) =

∑nsp

j=1 a
RC
ij Nj , where the matrix aRC

ij is
the heart of the model in that it is assumed to fully charac-
terize the rate-controlling bottlenecks of the kinetic mecha-
nism. For ideal gas behavior, µj(T, p,XXX) = gj,pure(T, p) +
RT lnXj , the constrained maximization yields the com-
position lnXCE

j = −gj,pure(T, p)/RT −
∑nel

i=1 γ
EL
i aEL

ij −∑nc

i=1 γ
RC
i aRC

ij . The Lagrange multipliers γEL
i and γRC

i

are called elemental and constraint potentials, respectively.
For the `-th chemical reaction

∑nsp

j=1 νj`Aj = 0, the
stoichiometric balance requires that bEL

i` =
∑nsp

j=1 a
EL
ij νj` =

0. An advantage of the RCCE approximation is that the
composition depends only on the nel + nc parameters γEL

i

and γRC
i , instead of the nsp molar amounts of species which

can be many more. In the CFD modeling context, this means
that in addition to the continuity, Navier-Stokes, and energy
balance equations, the nsp species balance equations can
be effectively substituted by the nel +nc balance equations
for the elemental and constraint potentials, thus achieving
a substantial model reduction that has a built-in strong
thermodynamic consistency and does not require to cut the
number of species nor the number of reactions to be taken
into account.

The recently proposed ASVDADD algorithm [4] allows
the identification of optimal sets of constraints with no need
for deep knowledge and understanding of chemical kinetics
fundamentals such as chain branching, radical formation,
etc., thus making the RCCE method accessible to a broad
range of scientists and engineers. The algorithm is based
on the following basic observation. The degree of disequi-
librium (DoD) of reaction `, defined by φ` = ln r+` /r

−
`

where r±` are the forward and reverse rates of reaction `, is
given in general by φ` = ln(r+` /r

−
` ) =

∑nsp

j=1 Λj νj` where
Λj = −µj/RT are the dimensionless entropic chemical
potentials that can be viewed as the components of the nsp-
vector ΛΛΛ. Also the nel rows of the elemental composition
matrix aEL

ij can be viewed as the components of the nsp-
vectors aaaEL

i . Due to relation
∑nsp

j=1 a
EL
ij νj` = 0, the nel-

dimensional linear span of vectors aaaEL
i is the left null space

of the matrix νj` of stoichiometric coefficients, often called
the inert subspace.

The projection of vector ΛΛΛ onto the inert subspace can be
written as ΛΛΛspan({aaaEL

i }) =
∑nel

i=1 γ
EL
i aaaEL

i where the coeffi-
cients γEL

i can be readily computed (see, e.g., the appendix
of Ref. [7]). Since ΛΛΛspan({aaaEL

i }) does not contribute to the
DoD of any reaction (in fact,

∑nsp

j=1

∑nel

i=1 γ
EL
i aEL

ij νj` =∑nel

i=1 γ
EL
i bEL

i` = 0), we call the vector ΛΛΛDoD =
ΛΛΛ − ΛΛΛspan({aaaEL

i }) = ΛΛΛ −
∑nel

i=1 γ
EL
i aaaEL

i or, equivalently,
ΛDoD,j = Λj −

∑nel

i=1 γ
EL
i aEL

ij the “overall DoD vector.”
In fact, it contains the information about the DoD’s φ`
of all the reactions, φ` =

∑nsp

j=1 ΛDoD,j νj`, and it is the
null vector if and only if all reactions are equilibrated, in
the sense that their DoD’s are all zero. Notice that within



the RCCE model ΛΛΛRCCE
DoD =

∑nc

i=1 γ
RC
i aaaRC

i or, equivalently,
ΛRCCE
DoD,j =

∑nc

i=1 γ
RC
i aRC

ij .
Now let us consider a CFD numerical simulation in which

the index z = 1, . . . , Z labels the space-time discretization
(i.e., z labels both the finite volumes or elements of the
mesh as well as the time grid). If we adopt the full DKM
and solve the full set of balance equations including those
for all the species, the resulting overall DoD vectors form
an nsp×Z matrix ΛDKM

DoD,jz = ΛDoD,j(z) that has rank r =
nsp−nel. If instead the local states are described according
to the RCCE assumption defined above, the nsp×Z matrix
ΛRCCE
DoD,jz = ΛRCCE

DoD,j (z) =
∑nc

i=1 γ
RC
i (z)aRC

ij has rank equal
to the (typically much smaller) number nc of constraints.

In order to identify the constraint matrix aRC
ij that allows

such approximation, the idea behind the ASVDADD algo-
rithm is to probe the DKM by running a preliminary full
DKM computation, possibly on a submesh of the full prob-
lem and for a shorter time so as to span a limited range of
temperatures, pressures and compositions. The goal of such
computation is to obtain the r×Z matrix DDD with elements
ΛDKM
DoD,jz . Then we compute its singular value decomposition

(SVD). As is well known the result can be written formally
in reduced form as DDD = UUU diag(σσσ)VVV where UUU is an nsp×r
unitary matrix whose r columns represent an orthonormal
basis for the column space of DDD, VVV is an r × Z unitary
matrix whose r rows represent an orthonormal basis for the
row space of DDD, and σσσ is the r-vector of singular values of
DDD in decreasing order. Explicitly, the (reduced form) SVD
decomposition of the overall DoD matrix can be written as
ΛDKM
DoD,jz =

∑r
k=1 Ujk σk Vkz =

∑r
k=1 Ujk γ

DKM
kz , where

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and we defined γDKM
kz = σk Vkz .

Next, we use the well-known Eckart-Young theorem of
linear algebra, whereby if in the SVD of matrix DDD we
set to zero the singular values for k > nc (i.e., we set
σnc+1 = σnc+2 = · · · = σr = 0) then we obtain
the “closest” rank≤ nc approximation DDDapprox of the
original matrix DDD in the sense that the Frobenius norm
distance ‖DDDapprox − DDD‖Fro between the two matrices is
minimal. Such norm distance is equal to

∑r
k=nc+1 σ

2
k)1/2

and can be taken as a measure of the error introduced by
the approximation. Therefore, if we accept such level of
approximation, we can setup an optimal RCCE model with
nc constraints by selecting as our constraint matrix the first
nc columns of the matrix UUU . In fact, by setting (ASVDADD
choice of RCCE constraints): aRC

ij = Uji for i = 1, . . . , nc

we obtain ΛRCCE
DoD,jz =

∑nc

k=1 Ujk γ
RC
kz =

∑nc

i=1 γ
RC
iz aRC

ij

Interestingly, the r columns of the matrix UUU provide at
once the entire set of optimal RCCE constraints, already
ordered in decreasing order of importance. Essentially, in
conclusion, the ASVDADD algorithm identifies all the
constraints that characterize the kinetic bottlenecks of the
underlying DKM in effect in the range of conditions of the
chosen probe simulation, and it ranks them in decreasing
order of their relative contribution to the overall degree of

disequilibrium. These features make the algorithm suitable
for adaptive or tabulation strategies and therefore opens up
the advantages of the RCCE method to CFD simulation.

The effectiveness and robustness of the methodology has
already been demonstrated in [4-5] for several test cases of
increasing complexity in the framework of oxy-combustion
of hydrogen (8 species, 24 reactions) and methane (29
species, 133 reactions) as well as in [6] where a demonstra-
tion is given for the even more complex full GRI-Mech 3.0
kinetic scheme (53 species, 325 reactions) for methane/air
combustion including nitrogen oxidation.

The excellent performance of the ASVDADD constraints
confirms the conclusion that the new algorithm essentially
resolves the difficulties that have prevented the RCCE
method from a more widespread use in model order reduc-
tion of detailed combustion kinetic models of hydrocarbon
fuels, making it accessible to the non-experts in chemical
kinetics.

The RCCE model can be integrated most efficiently by
rewriting the balance equations as rate equations for the
elemental and constraint potentials (see Eqs. 136-139 of
Ref. 3) to obtain nel+nnc+2 implicit differential equations
which together with the nsp RCCE expressions for the mole
fractions can be solved for the nsp + 2 state variables T (t),
p(t), and Nj(t), and the nel+nc constraint potentials γEL

i (t)
and γRC

i (t).
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Abstract— Assumptions of quasi steady-state (QSS) species and 

partial equilibrium (PE) reactions have long been applied in the 

computation and analysis of reacting flows to reduce stiffness 

and cost. In this study, based on a recent CSP theory, numerical 

evidence is presented for an explicit analytical expression of fast 

radicals exhibiting QSS behavior. Meanwhile, a strategy of 

identifying non-independent equations induced by partial 

equilibrium reactions is proposed by analyzing the partial 

Jacobian of fast species. A two-stage ignition case of n-

heptane/air using a detailed mechanism is taken as an example 

to demonstrate both aspects. 

I. INTRODUCTION 

Stiffness removal in chemical kinetics has attracted 

extensive research interests in recent years [1]. An analytical 

formulation for the efficient implementation of 

computational singular perturbation (CSP) has been 

theoretically constructed by Lam in CSP 2016 [2], in which 

insights have been made on the fastest species based on its 

time scale (𝜏𝑖 = −
1

𝐉𝑖𝑖
), and the corresponding QSS value 

could be accurately predicted across the thin transition layer 

at each time step. As a result, tedious explicit integration to 

resolve the apparent exponential transition layer is avoided 

and the integration time step could be largely extended. 

Furthermore, the process does not involved expensive eigen-

decomposition.  

In Sec. 2 of [2], a toy problem is proposed to 

address the potential coupling between the fast species by a 

fast reversible reaction. It is shown that a linear combination 

of a pair of fast species could be a slow variable, and can be 

considered approximately constant within the thin transition 

layer. However, in real kinetic systems, those fast species 

coupled by a fast reversible reaction frequently do not appear 

in pairs; instead, there are many different ways of coupling 

among them.  

In this study, the enabling assumption of Eqns. 4 

and 5 in [2] is computationally demonstrated for a toy 

problem together with different real systems to show the 

usefulness and application of the theory, especially for 

simpler ones where the number of radicals is limited and 

large gaps in the species lifetime exist. To further 

computationally demonstrate PE in real problems, a general 

formulation is then proposed, based on the idea of adaptive 

hybrid integration (AHI) [3], and the number of independent 

reactions could be identified in the integration process or by 

post-processing.  

II. METHOD OF IDENTIFYING NON-INDEPENDENT EQUATIONS 

The underlying thought is that at any given instant, those 

species with time scale faster than the wanted integration 

time step Δ𝑡, i.e., 𝜏𝑖 < Δ𝑡*β where β is a safety factor larger 

than 1, are considered to be fast, and implicit integration is 

used for its evolution. As such, we have 
𝑑𝒚

𝑑𝑡
= 𝝎(𝒚), where y 

is a vector including concentration and temperature, 

𝒚𝑛+1 − 𝒚𝑛 

Δ𝑡
= 𝝎(𝒚𝑛+1) ≈ 𝝎(𝒚𝑛) + 𝐉(𝒚𝑛+1 − 𝒚𝑛) 

(𝐉 −
𝐈

Δ𝑡
) (𝒚𝑛+1 − 𝒚𝑛) ≈ −𝝎(𝒚𝑛) 

Let 𝐀 ≡ (𝐉 −
𝐈

Δ𝑡
) = 𝐅 + 𝐒 

where F is a sparse matrix only with large entries and S has 

no large entries, and let  𝐅 =
𝐅̃

𝜀
, 𝐅̃ = 𝑶(1) 

𝐅̃(𝒚𝑛+1 − 𝒚𝑛) ≈ −𝜀(𝐒(𝒚𝑛+1 − 𝒚𝑛) + 𝝎(𝒚𝑛)) = 𝑂(𝜀) 

After eliminating the equations with all zero coefficients and 

applying sparse QR decomposition 𝐅̃ = 𝐐𝐑, we have: 

𝐑(𝒚𝑛+1 − 𝒚𝑛) ≈ −𝜀𝐐−1(𝐒(𝒚𝑛+1 − 𝒚𝑛) + 𝝎(𝒚𝑛)) 

The set of independent algebraic equations can be obtained 

by retaining only those equations corresponding to the non-

zero diagonal entries in R, while the rest are “conserved” 

modes by the coupling of fast reversible reactions - PE. 

III. RESULTS AND DISCUSSION 

A. QSS demonstration 

 



Fig. 1. A toy problem to show the usefulness of Eqns. 4 & 5 in [2]. 

Fig. 1 shows an example of the usefulness of Eqns. 

4 and 5 in a simple initial value problem in the form of  
𝑑𝑥

𝑑𝑡
=  −

𝑥

𝜏
+ 𝑓(𝑡) 

When 𝜏 is very small, as long as f(t) changes relatively slow, 

x will approach 𝜏f(t) in a thin transition layer of O(𝜏) as 

shown in Fig. 1. However simple this is, it exactly shows the 

behavior of fast radicals in general chemical kinetics if its 

reaction source term is linearized by using Eqn. 4. Based on 

this fact, the thin transition layer corresponding to the fastest 

species at each time step could be skipped such that the 

explicit integration time step can be significantly extended 

as shown in the H2/air autoignition case in Fig. 2. 

 
Fig. 2. Capability of integration time step elongation using CSP 2016: an 

example of autoignition of H2/air using mechanism by Li et al. [4]. 

 
Fig. 3. Demonstration of the usefulness of Eqn 5 from CSP 2016 in n-

heptane/air two-stage ignition. 

Even in the case of simulating the two-stage ignition 
of n-heptane/air using the LLNL detailed kinetics with 561 
species [5], by analyzing the data calculated by SENKIN, it 
is seen that Eqn. 5 works perfectly for each fast species 
throughout the entire ignition process. The results indicate 
that the linearized reaction source term by Eqns. 4 and 5 can 
be utilized in general for all fast species.  

B. PE demonstration  

The constant volume two-stage ignition of stoichiometric 
n-heptane/air under 10 atm and 800K using detailed LLNL 
mechanism is simulated using the hybrid integration method 
(AHI) and implicit integration by SENKIN, with Δ𝑡 being 10-

7s and β 15. Figure 4 is the phase plot of key species 
concentration versus temperature and shows good agreement. 

 
Fig. 4. Comparison of two-stage ignition of n-heptane/air using LLNL 

detailed chemistry using hybrid integration and SENKIN. 

 
Fig. 5. Evolution of number of fast species and non-independent 

equations during n-heptane/air two-stage ignition. 

By analyzing the sparse Jacobian of the fast species, 
with fixed Δ𝑡 = 10-7s, the number of fast species steadily 
increases due to the elevated temperature and pressure and 
consequently reduced species lifetime; however, the number 
of non-independent equations approaches the total number of 
fast species at the first-stage ignition, implying that the first-
stage ignition is controlled by the equilibrium shift of fast 
reversible reactions; while the number of non-independent 
equations is significantly less than the total number of fast 
species during the entire second-stage ignition, showing 
radical accumulation and the explosive nature of the second-
stage ignition.  
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Abstract— Computational singular perturbation (CSP) is a
useful framework for analysis, reduction, and time integration
of stiff ordinary differential equation systems. It has found
dominant utility in chemical reaction systems with a large
range of time scales at a continuum deterministic level. On
the other hand, CSP is not directly applicable to chemical
reaction systems at micro or meso-scale, where stochasticity
plays a significant role and thus has to be taken into account.
In this work we develop a novel stochastic computational
singular perturbation (SCSP) analysis and time integration
framework, and associated algorithm, that can be used to
not only construct accurately and efficiently the numerical
solutions to stiff stochastic chemical reaction systems, but also
analyze the dynamics of the reduced stochastic systems.

I. INTRODUCTION

Consider a stochastic reaction system of N unknowns
denoted by the column stochastic process vector

z(t) = (z1(t), z2(t), . . . , zN (t))T ,

with the governing stiff stochastic differential equations (or
chemical Langevin equations):

dz = f(z)dt+ g(z) ◦ dW (t), (1)

where f and g are N × 1 column vectors, W (t) ∈ R is a
standard Brownian motion, and ◦ denotes the Stratonovich
product. Our goal is to design an algorithm to split the
amplitudes of both f and g in (1) into two classes, fast/rapid
and slow, as

f =

(
fr

fs

)
, g =

(
gr

gs

)
, (2)

where fr = (f1, . . . , fm)T and gr = (g1, . . . , gm)T are
m vectors representing the deterministic and stochastic fast
amplitudes respectively, and fs = (fm+1, . . . , fN )T and
gs = (gm+1, . . . , gN )T are N −m vectors representing the
deterministic and stochastic slow amplitudes respectively.

II. ALGORITHM

The idea is to find two sets of basis vectors, ai and αi

for i = 1, . . . , N , iteratively, such that the deterministic and
stochastic vector field of (1) can be decomposed to

f(z) = Arfr +Asfs, g(z) = Argr +Asgs. (3)

To this end, the evolution of deterministic and stochastic fast
and slow modes are derived to follow a stochastic ODE

d



fr

fs

gr

gs

 = P dω(t)



fr

fs

gr

gs

 , (4)

where P is an N ×N evolutionary matrix and

dω(t) = Diag [Imdt, IN−mdt, Im ◦ dW (t), IN−m ◦ dW (t)].

The goal is then to block diagonalize the matrix P itera-
tively to split the fast and slow dynamics from each other,
which is done by a procedure of basis refinement (BE).

The main tool used for BE is based on algebraic Gaussian
elimination (GE) on the matrix P . As for CSP, basis
refinement can start from an arbitrary set of basis vectors.
Each BE iteration for SCSP consists of two steps. The first
weakens the coupling of fast modes from the slow (by a
column GE), and the second weakens the coupling of the
slow mode from the fast (by a row GE). A good choice for
the initial set of basis are the eigenvectors of the vector field,
especially when the system (1) is not strongly non-linear.

III. MAIN RESULTS

The main results of this work include: (1) splitting the
drift f and the volatility g of the stiff SDE (1) into
fast and slow components; (2) constructing the stochastic
slow manifold and deriving simplified dynamics along the
manifold; and (3) developing an efficient explicit time-scale
splitting algorithm to integrate the stiff SDE (1).

IV. APPLICATION

The SCSP algorithm is applied to the stochastic Davis-
Skodje system

dx(t) = −x(t)dt+ µx(t) ◦ dW (t),

dy(t) =

(
−γy(t) + γ

x(t)

1 + x(t)
− x(t)

(1 + x(t))2

)
dt

+σ
√
γy(t) ◦ dW (t),



where x(t) and y(t) are stochastic processes, µ and σ are
small positive numbers, and W (t) is a one-dimensional
Wiener process. Two different initial sets of basis vectors
are examined, one with arbitrary vectors and one with eigen
vectors. For the set with arbitrary vectors the SCSP shows
its robustness in reducing the order of magnitude of the
deterministic and stochastic fast modes, as well as reducing
the stiffness of the simplified system. For the set with eigen
vectors, the effect of refinements is not significant. This
is because that the eigen vectors are close to the ideal
vectors as the system is not strongly nonlinear, and hence
a simplified system with no stiffness can be obtained even
without refinements.

We illustrated the algorithm using the stochastic Davis-
Skodje system. The construction follows the structure of
the CSP time integrator for stiff ODEs. With decoupled
fast/slow dynamics, the numerical simulation of a stiff
SDE can be done by first approximating the fast dynamics
with a stochastic algebraic relation, then integrating the
system according to the slow dynamics. Since the stochastic
algebraic relation describing the fast dynamics does not
depend on the step length of time integration, and the
subsequent time integration of the slow processes is non-
stiff, the construction allows stable integration with large
explicit time steps. Selected results are shown below.
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Fig. 1. Solution trajectories starting from a number of initial conditions,
computed with both the deterministic and stochastic DS system, using
explicit time integration of the stiff system. Also shown is the deterministic
manifold. Parameter values are: σ = µ = 0.02, h = 10−4, γ = 100.
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Fig. 2. Time evolution of (x, y), starting at (5, 1.2), based on computa-
tions of the stochastic DS system with both the original stiff formulation
and with SCSP, with no refinement. Baseline case, with the same (σ, µ, γ)
as in Fig. 1, and with hstiff = 10−4 and hSCSP = 10−2.
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Fig. 3. A comparison of the time trajectories of the stochastic DS system
using the SCSP integrator including both no-refinement and one refinement
cases, for the baseline conditions, and plotted on a logarithmic time axis.
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Abstract—Computational Singular Perturbation (CSP) tools 
were used in order to determine algorithmically additives that 
can affect ignition delay in DME/air and EtOH/air mixtures. 
Identification through CSP is not a necessary condition for 
additives to be effective. Additives that are not pointed by CSP 
can also have a substantial effect on ignition delay, provided 
that they drastically alter the prevailing chemistry.  
Chemically stable, relatively light species were determined 
that can drastically affect ignition delay, such as hydrogen 
peroxide, formaldehyde and acetaldehyde.  

I. INTRODUCTION 
The potential advantages of low-temperature combustion 
have been demonstrated through a long line of experimental 
and computational works [1,2]. However, industrial 
application of these technologies has so far been hindered 
by the lack of reliable mechanisms for the control of 
ignition delay and subsequent heat release. This caveat has 
recently motivated Reactivity-Controlled Combustion 
Ignition (RCCI) [3].  The so far dominant application of the 
technology has been to mix fuels of low and high octane 
numbers. Alcoholic additives have also been used for 
emission reduction and octane number control [4], and 
cetane-number enhancers have been proposed. This raises 
the question whether an algorithmic process can be 
established, through which additives can be identified for 
ignition delay control. The CSP method provides an 
algorithm for the decomposition of fast and slow dynamics 
of the chemical kinetics source term and introduces tools 
that can identify reactions and species, which contribute 
substantially to the dynamics of the oxidation [5,6].  In this 
paper, we apply CSP tools in order to determine species 
that can affect ignition delay for the combustion of two 
biofuels, namely ethanol (EtOH) and dimethylether (DME). 
Interestingly, the two are isomers, which means that they 
have similar thermochemistry but different kinetics.  

II. PHYSICAL PROBLEM AND CSP TOOLS 
The isochoric and adiabatic ignition of EtOH- and DME-air 
mixtures was studied for initial temperatures 700 K<T0< 
1500 K, pressures 0.1 MPa<p0< 5 MPa and equivalence 
ratios 0.7<φ<1.3. The system of species evolution and 
energy conservation equations was solved and ideal gas 
behavior was assumed for all species.  The chemical 

kinetics was modeled with the mechanism of [7], which 
utilizes 253 species, 6 elements and 1542 elementary 
reactions. Of particular importance are two diagnostic tools 
that were utilized for the algorithmic identification of 
additives, namely the Time Participation Index (TPI) Jk

n, 
which measures the contribution of the k-th reaction to the 
n-th eigenvalue of the system (or equivalently the n-
timescale), and the CSP pointer (Po) Dk

e, which measures 
the contribution of the k-th scalar (i.e. species mole fraction 
or temperature) to the time scale and amplitude of the 
explosive mode of the system. Precise mathematical 
definitions of TPI and Po are provided in [8,9].  

III. ADDITIVE SELECTION AND EFFECT ON IGNITION DELAY 
Additive selection was mainly based on the determination 
of species that exhibited large values of Po in the so-called 
explosive stage, i.e. the time interval that precedes the steep 
temperature rise. TPI and Po data were calculated for all 
possible combinations of φ= 0.7, 1, and 1.3, p0 = 0.1, 1, 3, 
and 5 MPa, T0 = 700, 900, 1100, 1300 and 1500 K.   

For the EtOH case, it was established that the set of 
reactions and species that exhibited large values of TPI and 
Po respectively did not vary drastically with initial 
conditions. Hydrogen chemistry plays an important role 
during the explosive stage. The reactions HO2+EtOH → 
sC2H4OH+H2O2 and H2O2+M → 2OH+M are strongly 
pointed by TPI, whereas HO2 and H2O2 consistently have 
the largest values of Po.  

For the DME case, the situation is more complicated.  
Initial pressure does not have a major effect on the 
reactions/species with the largest TPI/Po values, but with 
increasing temperature, the heavy unstable intermediates 
such as CH3OCH2O2 and HO2CH2OCHO that are strongly 
pointed for low temperatures subside and, for T0>900 K, 
CH3O2 is strongly pointed. This is produced through the 
reaction CH3+O2+M→ CH3O2+M, which acquires a high 
TPI value. This transition is related to the NTC behavior 
that DME demonstrates in the range 900 K<T0< 1100 K.  
When the initial temperature exceeds 1300 K in the DME 
case, CH2O acquires a high value of Po and the destruction 
of CH2O through CH2O+O2→HCO+HO2 has a major 
contribution to the fast explosive mode.  Typical results for 



the evolution of Po for several species during the explosive 
stage are provided in Fig. 1. 

Fig. 1. The largest CSP Pointers (Po) of the fastest explosive mode during 
the explosive stage of a DME/air (left) and a EtOH (right) mixture, along 

with the temperature;  To = 1100 K, po = 5 MPa, φ=1. 
The large values of Po point to species that can be 
considered as additives for ignition delay control. It is, of 
course, realized that several of the pointed species with 
large values of Po are unstable radicals, but it is also noted 
that among the pointed species there are simple and 
relatively cheap chemicals such as H2O2 and CH2O. It 
should be stressed that a high value of Po is a sufficient, but 
not a necessary condition for an additive to have an effect 
of ignition delay. A non-pointed species might have a small 
or a large impact on ignition delay, depending on whether it 
alters sufficiently enough the set of reactions that generate 
the explosive time scale.    

 
Fig. 2: Percentage change of ignition delay that is caused by insertion of 

10% molar of selected additives to DME fuel as a function of initial 
temperature.  H2O2: black, CH3O2: red, CH3CHO: green, CH2O: blue, 

C2H6: violet 
 

This is shown in the results of Figs. 2 and 3, which present 
the percentage of decrease in ignition delay that is achieved 
through the insertion of several additives with a mole 
fraction of 10% in the fuel blend.  It can be seen e.g. that 
CH3CHO, which was not pointed for either the EtOH or the 
DME case, has a non-negligible effect on ignition delay, 
whereas CH3O2, which is pointed for the DME case, but not 
for EtOH, has a drastic effect on ignition delay for both 
DME and EtOH.  Clearly, the algorithmic approach can be 
complemented by “educated” guesses such as species that 
have the same characteristic group (like the non-pointed 
CH3CHO with the pointed CH2O) or species that are 
pointed for isomers of the fuel under consideration (or 
possibly even fuels of approximately equal molecular 
weight).  However, it is noted that these guesses are also 
indirectly guided by the results of the CSP algorithm. 

 
Fig. 2: Percentage change of ignition delay that is caused by insertion of 

10% molar of selected additives to EtOH fuel as a function of initial 
temperature.  CH3O2H: black, CH3O2: red, HO2: green, H2O2: blue, 

CH3CHO: violet 

IV. CONCLUSIONS 
CSP tools can identify the intermediate species that relate 
the most to the characteristic time scale that leads the 
system to ignition and can therefore be used as additives for 
the purpose of ignition-delay control.  For DME and EtOH, 
several of the additives that were determined were radicals, 
addition of which in practical fuels is impossible (CH3O2, 
CH3O2H, HO2). However, several stable and relatively light 
additives that can affect ignition delay were also identified, 
such as H2O2, CH2O, and CH3CHO.  Species that are not 
identified by the CSP pointer can also affect ignition delay, 
provided that they can alter the prevailing chemical 
dynamics when added to the fuel.   
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Abstract—To investigate the sensitivity of simulation 

predictions to chemical kinetics, GRI-Mech 3.0 and an 11-

species syngas model, are compared by performing 3D finite-

rate kinetics-based DNS of temporally evolving turbulent non-

premixed flames. Significant deviations indicate high 

sensitivity to the chemical kinetics. This sensitivity is 

magnified relative to a 1D steady laminar simulation by the 

effects of unsteadiness and turbulence, with the deviations in 

species concentrations, temperature, and reaction rates 

forming a nonlinear positive feedback loop under the 

considered reacting flow conditions.  The deviations between 

the two models majorly caused by: (a) GRI-Mech 3.0 contains 

more species than the 11-species model; (b) reaction rate 

coefficients are different for the same reactions. Both (a) and 

(b) are sensitive to unsteadiness and other turbulence effects. 

However, (b) is the dominant part and is more sensitive.  

I. INTRODUCTION 

Most existing chemical kinetics models offer similar 
predictions of ignition and extinction in 0D/1D finite-rate 
simulations of laminar combustion processes. Is it 
appropriate, therefore, to extend this observation to a 3D 
turbulent combustion environment? In order to answer this 
question, two chemical kinetics models are used to simulate 
a temporally evolving turbulent non-premixed syngas flame, 
and the results are compared. 

II. NUMERICAL METHODS 

In this study, the well-established reacting flow solver 
AVF-LESLIE [1] has been used. The solver uses the 2nd-
order accurate MacCormack finite volume scheme  on 
generalized curvilinear coordinates, and an explicit 2nd-
order accurate scheme for time-integration. For reasons of 
both accuracy and computational speed, point-implicit stiff 
ODE (ODEPIM) solver is selected for the integration of 
chemical source term. DAC generates locally reduced 
kinetics for each spatial location and time step. Only the 
reaction rates of active species are calculated. To reduce the 
computational overhead for mechanism reduction, a 
correlation technique [2-5] is introduced to share the 
reduced kinetics among time-space points with similar 
thermochemical states. Using the similar correlation 
technique but different grouping criteria [3-6], the 
calculation of mixture-averaged transport coefficients can be 
reduced significantly without computational overhead. 

III. RESULTS AND DISCUSSION 

In this study, we consider a canonical temporally evolving 
non-premixed flame. The characteristic jet velocity is 100 
m/s, and the pressure is 1 atm. The configuration comprises 
an inner fuel jet (50% CO, 10% H2, and 40% N2 by volume) 
and an outer oxidizer stream (25% O2 and 75% N2 by 
volume), which are counter-flowing in the streamwise 
direction. The jet has a Reynolds number (Rejet) of 2315 and 
a Damkohler number (Da) of 0.01. The computational 
domain is Lx × Ly × Lz ≡ 12H × 14H × 8H, where H = 
0.96 mm is the initial width of the fuel jet. The simulations 
in this study employ about 18 uniform spaced points along 
H. The characteristic transient jet time is defined as 𝑡𝑗 =
𝐻/𝑈, and the simulations are conducted up to 40 𝑡𝑗 to 

capture both extinction and re-ignition. Two chemical 
kinetics models are compared. The 1st model, GRI-Mech 
3.0 [7], comprises 325 steps and 53 species, and serves as a 
detailed stiff mechanism. The 2nd is a 21-step, 11-species 
non-stiff mechanism [8] developed by Hawkes et al. 

 
Fig. 1. Temporal evolution of mean temperature on the stoichiometric 

surface obtained from GRI-Mech 3.0 and 11-species model. 

Figure 1 compares the temporal evolution of the 
temperature field on the stoichiometric surface obtained 
from simulations using GRI-Mech 3.0 and the 11-species 
model. Although the starting temperature and the trend are 
the same, the prediction from the 11-species model 
gradually deviates from that of GRI-Mech 3.0. The 
deviation reaches its peak of 86 K (6%) near 20𝑡𝑗, but 

decreases slightly afterwards, stabilizes at ~50 K, and 
remains stable to the end of the simulation.  



TABLE I.  
CONTRIBUTION FROM (A) TO THE MAXIMAL (OVER TIME) ABSOLUTE 

DEVIATIONS; ABSOLUTE DEVIATION MAGNIFICATION FACTORS FOR (A) 

GLOBAL REDUCTION OF REACTION PATHWAYS, (B) DIFFERENT REACTION 

RATE COEFFICIENTS, AND TOTAL – BASED ON 𝑇|𝑍𝑠𝑡 AND 𝑌𝑘|𝑍𝑠𝑡 
Contribution from (a) 

to total deviation (%) 
T 𝑌𝐻2

 𝑌𝑂2
 𝑌𝐻 𝑌𝐻2𝑂 

1D steady laminar 32.98 16.5 25.00 10.57 >100 
3D turbulent 13.01 20.0 30.77 05.08 11.11 

Magnification factor 
of deviation 

T 𝑌𝐻2
 𝑌𝑂2

 𝑌𝐻 𝑌𝐻2𝑂 

(a) Reduced pathways 2.79 12.12 2.67 08.11 0001.38 
(b) Different RR coeff. 9.18 09.58 2.00 17.89 1329.36 

Total 7.08 10.00 2.17 16.86 0012.55 

The differences between the two models include two 
major parts: (a) GRI-Mech 3.0 contains 42 more species 
than the 11-species model; (b) for those reactions included 
by both models, their reaction rate coefficients are different. 
Table 1 shows the contribution of (a) to the total absolute 
deviations between the two chemical kinetics models, and 
the absolute deviation magnification factors for (a), (b), and 
total. Both (a) and (b) are sensitive to unsteadiness and other 
turbulence effects for all quantities. With only (a), the 
magnification is up to 12 times, but the deviations are within 
~4%. For temperature and all species with more than 10 
times total deviation magnification, (b) is more sensitive, 
which results in the rise of its contribution to total deviations 
from 1D steady laminar case to 3D turbulent case. 
Essentially, (a) means the reaction rates of those globally 
reduced pathways are linearly removed. In contrast, (b) the 
difference in reaction rate coefficients (e.g. activation 
energy) can be nonlinearly (e.g. exponentially) enlarged. In 
summary, (b) is the dominant part and is more sensitive to 
unsteadiness and other turbulence effects. 

 
Fig. 2. Comparison of GRI-Mech 3.0 (solid line) and 11-species model 

(dashed line) in 1D steady laminar solutions (initial data and laminar 

flamelet values at extinction) and 3D turbulent simulations (at 20𝑡𝑗 

and 40𝑡𝑗): the conditional means of (a) T, (b) YOH, (c) YO, and (d) YH. 

The mixture-fraction conditioned mean values of T, and 
mass fractions of OH, O, and H at local extinction (20 𝑡𝑗) 

and re-ignition (40 𝑡𝑗), are shown in Fig. 2. Although the 

predictions from the two chemical kinetics models show the 
same trends, the 11-species model predicts a lower radicals-
to-products conversion rate for release heat. As a result, the 
11-species model predicts more local extinction (mean T|Zst 
is 49 K smaller) but less re-ignition (mean T|Zst is 42 K 
smaller). All deviations in the 3D turbulent simulations are 
significantly larger than those in the 1D steady laminar 
solutions, except for the OH. There are only minor 
deviations between GRI-Mech 3.0 and its globally reduced 
version in the same comparison (not shown here). 

IV. CONCLUSIONS 

To study the sensitivity of predictions to chemical 
kinetics models, GRI-Mech 3.0 and an 11-species syngas 
model, are compared in the 3D finite-rate simulation of a 
temporally evolving turbulent non-premixed syngas flame. 
The prediction of the 11-species model gradually deviates 
from that of GRI-Mech 3.0. In general, the deviations of the 
two chemical kinetics models increase sharply from 1D 
steady laminar to 3D unsteady laminar to 3D turbulent 
simulations for most quantities. Thus, the absolute deviation 
in turbulent combustion simulations is larger than that in 1D 
steady laminar solutions by up to 7 times for temperature, up 
to 12 times for CO, up to 13 times for H2, up to 7 times for 
O2, up to 5 times for CO2, and up to 13 times for H2O. 
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Abstract—Amongst the most complex chemical reaction 
networks are those involving free radical driven oxidation and 
pyrolysis, which take place through a series elementary 
reactions connecting the initial reactants with final products 
under certain initial conditions (temperature, pressure, 
composition, etc.). Theoretically, these complex processes can 
be predicted using a chemical kinetic model comprising a series 
of elementary reactions with corresponding kinetic rate 
parameters and species thermodynamic data. Such models are 
capable of predicting various combustion relevant 
phenomenon, such as ignition delay time, flame structure, and 
various pollutant emissions, as well as oxidation of pollutants 
in the atmosphere, and the pyrolysis of heavy hydrocarbon 
mixtures in chemical refineries.  These models are useful for 
engine design, but their computational cost often exceeds 
available resources.  In this work, we present three case studies 
to demonstrate the power of applying machine learning 
algorithms for the prediction of important combustion 
properties properties.  These include determining critical 
compression ratio for autoignition, fuel octane numbers, and 
fuel/air mixture ignition delay time.  

I. INTRODUCTION 

Machine learning has revolutionized the approach to 
multitudinous areas of research and industry, as well as 
affected countless aspects of our lives. One of the most 
notable machine learning tools is known as deep learning or 
the application of neural networks, which allows for 
complex relationships to be found, if present, between 
parameters of interest for numerous kinds of data. This may 
allow for an alternative way to quantify, qualify, and analyze 
data within the field of combustion chemistry, as has been 
recently demonstrated in other chemically reacting systems 
[1].  Our eventual goal is to make highly accurate and robust 
models for the prediction of relevant attributes such as, 
ignition delay time, octane and cetane numbers, laminar 
flame speed, critical compression ratio, heat release, etc. 
[2][3][4][6], which will in turn contribute to fuel and engine 
design.  

II. METHODS AND RESULTS 
 

A. Compression Ratio 

The first study is concerned with predicting the critical 
Compression Ratio (CR) for autoignition of primary 
reference fuels (PRFs) blended with ethanol, when provided 
with initial conditions for inlet temperature, revolutions per 
minute (rpm), and mixture composition. Ethanol has a 
nonlinear relationship when blended with other fuels with 
respect to their octane number, which can be directly related 
to critical CR [5]. Therefore, machine learning was of 
interest for this problem.  An artificial neural network 
(ANN) was developed to predict the experimentally 
measured critical compression ratio for various fuel blends. 
Overall, an average percentage error of 1% was achieved, 
which is within the experimental uncertainty of the study. 
Examples from the test set are shown in Fig. 1, where the 
trend line indicates the desired result. This same principle 
could be extended to other fuels, and to wider ranges of the 
studied parameters, allowing for a general model able to 
substitute, or at the least supplement the corresponding 
experiments.  

 

B. Octane Numbers 
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Figure	1,	Predicted	Compression	Ratio	vs.	Experimental 



The second study of interest is with regards to the 
prediction of the Research and Motor Octane Numbers 
(RON and MON) for various hydrocarbon fuels.  Here, we 
simplify the fuel composition to s set of functional group 
descriptors; for example, the weight % of CH3, CH2, CH, 
olefins, naphthenes, aromatics, and ethanol, the average 
molecular weight, and the Branching Index (BI). In order to 
relate these independent features to the compound’s RON 
and MON, ANN were used.  To improve the ANN model, a 
genetic algorithm was applied to evolve against a randomly 
chosen training set.  The final model achieved an overall 
average percentage error of 1.3%, proving both that fuel 
molecular parameters are indeed related to the octane 
number of a fuel, and that using deep learning for such 
problems can provide a trustworthy model. Results from the 
test set are presented in Fig. 2.  

	
Figure	2,	Predicted	Research	Octane	Number	vs.	Experimental 

C. Ignition Delay 

Lastly, an ANN model was developed for the prediction 
of ignition delay  time (IDT) for fuels composed of ethanol, 
iso-octane, n-heptane, and toluene, as a function of mixture 
composition, initial temperature, and initial pressure. Unlike 

previous case studies, the training dataset was obtained from 
simulations with a detailed chemical kinetic model using 
CANTERA. This will allow for a more general and 
extensive model. The model was able to predict complex 
pressure and temperature dependent ignition phenomenon, 
including negative temperature coefficient (NTC) behavior, 
with an average percentage errors of ~3%.  

III. CONCLUSIONS 

Chemical kinetic modeling is a useful tool for 
understanding combustion phenomenon, but computational 
expense limits its application in practical design processes.  
In this work, ANNs were used due to their ability to 
effectively capture non-linear and complex relationships 
between input features and the output of interest. As shown 
in the above case studies, valuable models can be produced 
from previously collected data, such as from individual 
experiments, literature, and simulations. We are currently 
extending the machine learning approach to predict 
combustion emissions using a computational brewing 
approach to predict chemical reactions, kinetics, and product 
distributions. 
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Abstract

These are lecture notes for my presentation in the 2017 IWMRRF

conference at Princeton university.

Some obviously non-controversial statements

1. All terms in any governing equations have physically meaningful di-
mensional physical units. (e.g.

kilograms, meter, seconds, moles, meters per second, Kelvin de-
grees, moles/volume, ... etc.)

2. terms can be added or subtracted only if they have the same di-
mensional physical units.

3. The dimensional physical unit of a product of two variables, is the
product of the dimensioal physical units of the two variables .

4. The dimensional physical unit of a ratio of two variables, is the ratio
of the dimensioal physical units of the two variables.

5. All equations have an equal sign ”=” The dimensional physical units
of the left and right sides of the equal sign must be the same.

⇤
Professor emeritus. Email: lam@princeton.edu
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6. A dimensionless parameter is always a ratio of two variables (or two
terms) with the same physical units. The reciprocal of a dimensionless
number is also dimensionless.

The challenging and ”fun” job of doing perturbation
analysis on a class of practically interesting problems
is the identification of dimensionless parameters which
can be ”negligibly” small.

How small is ”neglegibly” small?

• Let’s denote the identified dimensionless parameter by ✏, it is con-
sidered ”neglegibly” small when it is very ”small” in comparison to
unity.

• the ”largeness/smallness” of the magnitude of any dimensional num-
ber is meaningless unless it is compared to something with the same
dimentional physical unit.

Why do we call some perturbation analysis ”singular
perturbation” ?

The short answer is: When the methodology used to exploit the ”smallness of
✏” is not ”uniformly” valid in the space of dependent/independent variables.

Notations for the ”order of magnitude” of a function of
✏.

If the value of f(✏ ! 0) is neither very small nor very large in comparison
to unity, Then f(✏) is said to be an O(1) function in the small ✏ limit. If
g(✏)/✏) is O(1), then f(✏) is said to be an O(✏) function. If ✏ g(✏) is O(1),
then g(✏) is said to be an O(1/✏) function.

1 How to do any perturbation analysis?

1. Normalize all dependent and independent variables of interest, so that
all are intuitively expected to be O(1) dimensionless numbers. This
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is the hard part. Because the investigator needs ”experience and
knowledge” on the subject matter (and smart intuitions).

2. Write the governing equations in terms of these domensionless vari-
ables. Some dimensionless parameters (i. e. ratio of two terms with
same physical units.) will automatically show up.

3. Next, estimate the nominal order of magnitude of these dimensionless
parameters for the class of problems of you are interested in. The
one with the smallest nominal values is a good ✏ candidate for your
problems.

4. Now, neglect all O(✏) terms, this is the easy part. You have just
derived a ”leading-order” simplified reduced model for your problems,
provided that it is ”consistent” with the original intuitive normaliza-
tions of the dependent/independent variables.

What is the physical meaning of ✏ << 1 ?

• This is the fun part. It obviously means the value of the numerator in
the ratio formula for ✏ is much smaller than the value of the denom-
inator. You can now write an insightful paragraph in the discussion
section of your paper! You next need to find out whether your reduced
model so derived is ”uniformly” valid.

What are some of the famous dimensionless parame-
ters?

Mach number, Reynold’s number, Froude number, Knudson number,
Quantum number, ...
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Covariant geometric characterization of slow
invariant manifolds: New concepts and viewpoints

Dirk Lebiedz∗
∗Institute for Numerical Mathematics, Ulm University, Germany

Abstract— We point out a new view on slow invariant
manifolds (SIM) in dynamical systems which departs from
a purely geometric covariant characterization implying coor-
dinate independency. The fundamental idea is to treat the SIM
as a well-defined geometric object in phase space and elucidate
characterizing geometric properties that can be evaluated as
point-wise analytic criteria. For that purpose, we exploit cur-
vature concepts and formulate our recent variational approach
in terms of coordinate-independent Hamiltonian mechanics.
Finally, we combine both approaches and conjecture a differ-
ential geometric definition of slow invariant manifolds. For the
Davis-Skodje model the latter can be completely expatiated.

I. INTRODUCTION

The analysis of slow invariant manifolds (SIM) for singu-
larly perturbed dynamical systems goes back to Fenichel’s
geometric singular perturbation theory (GSPT). It formu-
lates by help of perturbation techniques for the critical
manifold (singular perturbation parameter ε = 0) the
classical SIM existence theorem involving non-uniqueness
similar to center manifold theory. A coordinate-specific
graph representation of the slow manifold (mapping slow
to fast variables) allows for a Taylor-series in the singular
perturbation parameter ε whose coefficients can be deter-
mined successively by matched-asymptotic expansion from
the invariance equation.
Our aim is to avoid the technical asymptotic local analysis
as a first step to address the issue of bundling of trajectories
near slow invariant manifolds to be rigorously defined
as mathematical objects. Instead, we propose a purely
geometric approach that uses global analysis in terms of
coordinate-independent differential geometric concepts. The
first step into that direction goes back to 2004 [3] when we
suggested to formulate a trajectory-based variational prin-
ciple distinguishing the SIM trajectories - parameterized by
fixed reaction progress variables (rpv) initial values - from
other trajectories. The objective functional for this problem
formulation has been developed from entropy production
[3] to curvature in time-parametrization [4] over the years.
As in many other computational techniques for point-wise
slow manifold approximation, a numerical grid for the rpv
is chosen and the non-reaction progress variables (non-rpv)
are computed on each grid point such that the resulting point
in phase space is close to the SIM [5].
Most of these numerical SIM approximation methods, in
particular the practical ones commonly used in applica-

tions, suffer from coordinate-dependency, they yield (at
least slightly) different results depending on the chosen
coordinate system (rpv) for the SIM (see Fig. 1). We
conjecture that a covariant formulation of SIM criteria,
coordinate-indepedency, i.e. invariance of the evaluation
result under the rpv permutation group, should be at the
root of a geometric characterization of an object in phase
space that is reasonably related to the Fenichel SIM.

z1

z2

Fig. 1. Schematic illustration of the dependency of computational SIM (red
curve) approximation (blue crosses) on rpv choice for the Davis-Skodje
example model (1).

We follow two roads to address this issue, the first one [6] is
analogy reasoning to analytic mechanics with its coordinate
independent general structure allowing to easily figure out
conserved properties in the time evolution of a dynamical
system. The second one [2] is rooted in differential ge-
ometry as the theoretical framework for covariant analysis
and coordinate-independent formulation of local geometric
properties of manifolds and exploits curvature concepts.
We develop and illustrate our reasoning on the background
of the benchmark problem (Davis-Skodje model)

ż1 = −z1, (1)

εż2 = −z + z1
1 + z1

− εz1
(1 + z1)2

as an example for a singularly perturbed two time-scale
system with analytically known SIM z2(z1) =

1
1+z1

.
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Fig. 2. Some solution trajectories (blue) and SIM (red) for the Davis-Skodje
model (1) in phase space (time as curve parametrization), ε = 10−2.

II. ANALYTIC MECHANICS

Inspired by an obvious local symmetry in the attraction
behaviour of solution trajectories to the SIM (see Fig. 2,
contraction rate ratio of vectors in normal versus tangent
bundle of the SIM locally becomes extremal [1]) we for-
mulate our variational problem for SIM approximation [4]
in a Hamiltonian context [6] in order to be able to identify
a conserved property that is related to a symmetry of the
Lagrangian by the famous Noether-theorem.
We find an objective functional that allows analytical com-
putation of the exact SIM of the Davis-Skodje model
in terms of the solution of a variational boundary value
problem [6]:

min
z(t)

∫ tf

t0

k1

∥∥∥ d

dt
z(t)

∥∥∥2
2
− k2‖z(t)‖22 dt (2)

subject to

ż1 = −z1,
εż2 = −z + z1

1 + z1
− εz1

(1 + z1)2
, z1(tf ) = z

tf
1

with constants k1, k2 ∈ R. Chosing k1 = 1, k2 = ε−1

z1(t)+1 ,
the solution of problem (2) on arbitrary time horizon [t0, tf ]
yields exactly the SIM z2(z1) =

1
1+z1

.
In the Hamiltonian viewpoint model reduction via projec-
tion to the SIM can be interpreted as partial integration of
the dynamical system flow on the basis of the existence of a
first integral (the Hamiltonian is conserved along the flow!).

III. DIFFERENTIAL GEOMETRY

One of the most famous examples of a covariant physical
theory is Albert Einstein’s general theory of relativity based
on a space-time manifold with appropriate metric tensor de-
rived from the gravitational field equation. The appropriate
mathematical framework is Riemannian geometry.
By analogy reasoning with respect to general relativity
we construct the extended phase space by adding to the
phase space of a dynamical system the time as a fully
equivalent state variable. A particular solution of the differ-
ential equation model is then a geometric curve in extended
phase space. The SIM is a state-space-time manifold. We

conjecture that an appropriate metrization (definition of a
Riemannian metric) of the solution manifold in extended
phase space will allow a complete geometric characteriza-
tion of the SIM. The force-curvature relation from general
relativity can be transferred to chemical kinetics.
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Fig. 3. Extended phase space with some solution trajectories (blue) and
SIM (red) for the Davis-Skodje model (1), ε = 10−2.

A. Curvature and Invariance: Necessary Condition for SIM

We demonstrated [2] that the SIM invariance property can
in general be covariantly formulated as vanishing time-
sectional curvatures of the extended-phase-space graph of
the SIM z2(z1, t) transporting in time along the flow an
initial value manifold z2(z1, 0). Vanishing curvature can be
formulated point-wise as a root finding analytic criterion
providing a necessary condition for the SIM.

B. Sufficient Condition for SIM: Davis-Skodje Model

Specifically for the Davis-Skodje model (1), the evaluation
of the time-sectional curvature criterion yields a differential
equation that can be analytically solved to a parameterized
solution of the model equation. In this case the analytic
mechanical approach and the covariant differential geomet-
ric viewpoint can be combined to formulate a sufficient
criterion for the SIM [2].
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Abstract— Recasting the ordinary differential equations of
chemical kinetics into universal “canonical” formats offers the
possibility of investigating some general traits, like the low-
dimensional slow manifolds which lie at the heart of dimen-
sional reduction strategies. Here we outline our perspectives
along this line of investigation.

I. INTRODUCTION

The identification of slow invariant manifolds (here sim-
ply termed “slow manifolds”, SMs) is a key step towards
the dimensional reduction in the description of complex
chemical kinetics. Although the formal definition of SM
is rooted in Fenichel’s geometrical singular perturbation
technique [1] based on the partition between fast-slow
evolution modes, the algorithmic implementation of the
mathematical definition poses several issues due to the fact
that for nonlinear kinetics the timescale separation is a local
property. In the past decades, a number of heterogeneous
but somehow related tools have been devised to work out
approximations of the SM. Among them, we just mention
the computational singular perturbation technique [2], the
construction of intrinsic- and attracting- low-dimensional
manifolds (respectively, ILDM [3] and ALDM [4]), and
variational strategies like the trajectory-based methods [5].

In such a scenario, our idea is that the SM, being a general
expected trait, should emerge, at least for the simplest class
of mass-action chemical kinetics, from the properties of
system-independent and universal “canonical” formats of
the evolution law. In a series of articles ([6], [7], [8]) we
derived and studied a quadratic canonical format of ordinary
differential equations (ODEs) into which the polynomial
rate equations of mass-action-based kinetics can be recast by
adopting an extended set of mutually interrelated dynamical
variables. A definition of SM naturally emerged. Interest-
ingly, such a kind of transformation was already known as
“embedding into Lotka-Volterra format” and was even re-
discovered several times by various authors before us [9].

II. CANONICAL FORMATS OF ODES

Here we shall focus on the simplest situation of N species
involved in M elementary reactions taking place in a per-
fectly stirred medium under isothermal conditions. Let x be
the N -dimensional array of the volumetric concentrations.

The application of the mass-action law yields the following
N -dimensional ODE system

dxj
dt

=

M∑
m=1

(
ν
(m)
Pj
− ν(m)

Rj

)
rm(x) , rm(x) = km

N∏
i=1

x
ν
(m)
Ri
i

(1)
where km is the kinetic constant of the m-th elementary
reaction with rate rm(x), and ν

(m)
Rj

and ν
(m)
Pj

are the stoi-
chiometric coefficients of species j as reactant and product,
respectively, in that reaction. Let us consider the N×M new
dynamical variables hjm(x) = rm(x)/xj , each associated
with a pair species-reaction. Their physical dimension is
inverse-of-time, and they evolve according to

dhjm
dt

= −hjm
∑
j′,m′

Mjm,j′m′hj′m′ (2)

with the matrix Mjm,j′m′ = (ν
(m′)
Pj′
− ν(m

′)
Rj′

)(δj,j′ − ν(m)
Rj′

)

where δ is the Kronecker delta. Notably, any mass-action
based kinetics can be embedded into (2) regardless of the
degree of non-linearity of the original rate equations. The
interrelations among the new variables make the transforma-
tion invertible, i.e., the physical state x can be retrieved from
the set of functions hjm [6]. In practice, general features of
the evolution in the extended space are mirrored by specific
features of the dynamics in the concentration space (and
vice versa). Eq. (2) represents the fundamental canonical
form in our work.

By turning to the (N × M)2 dynamical variables
Vjm,j′m′(x) = Mjm,j′m′hj′m′(x), one gets the further
extended set of ODEs

dVjm,j′m′

dt
= −Vjm,j′m′

∑
j′′,m′′

Vj′m′,j′′m′′ (3)

in which the details of the specific system are entirely
borne on the initial conditions. Finally, by introducing the
cumulative index J ↔ (jm, j′m′), the system’s state can
be expressed in a “hyper-spherical representation” where
the new dynamical variables are the positive-valued rate

S =
√
Tr{VTV} (the “radial” variable) and the unit-norm

vector ψ with (N ×M)2 components ψJ ≡ Vjm,j′m′/S.
By inspecting the evolution law of S and ψ [8], we have



shown the existence of fixed subspaces (of the hyper-
spherical space) that temporarily attract, one at a time, the
vector ψ(t) ≡ ψ(x(t)) while the reactive system follows a
trajectory x(t) in the concentration space.

III. CANDIDATE POINTS TO THE SM PROXIMITY

From (2) and (3), it follows that the rate functions

zjm(x) =
∑
j′,m′

Vjm,j′m′(x) (4)

control the evolution of the system in the extended space of
the new dynamical variables. The heuristic analysis made
in [6] and [7] allowed us to infer a close connection
between the location of the zeros of the state-dependent
time derivatives z(n)jm (x) for n → ∞ (with z

(n)
jm (x(t)) ≡

dnzjm(x(t))/dtn along a trajectory) and the SM. The
subsequent analysis in the hyper-spherical representation [8]
led us to justify the usage of low-order time derivatives to
produce points which likely fall in the neighborhood of the
SM. Namely, the scalar functions

Zn(x) =

√
(NM)−1

∑
j,m

z
(n)
jm (x)2 , n ≥ 0 (5)

were proposed as “guiding potentials” to localize the can-
didate points via minimization strategies. Since Z0 roughly
quantifies the slowness of the system’s evolution, and Z1

catches the persistence of the slowness [8], a two-step
minimization (of Z0 and Z1), in which the concentration of
one species is held fixed, is expected to localize a point near
the SM. Such a low-computational-cost method, recently
illustrated in [10] and implemented in the DRIMAK (“Di-
mensional Reduction of Isothermal Mass-Action Kinetics”)
package [11], proved to be efficient in benchmark cases.
Selected results for a basic hydrogen combustion model
[12] are shown in Fig. 1. We stress that this strategy does
not compete with other consolidated ones, rather it may be
useful to provide initial points from which a more refined
search of the SM can be performed.

IV. PERSPECTIVES

On methodological grounds, recasting the ODEs into
canonical formats may reveal a powerful means to discover
and characterize general traits (not only the slow mani-
fold feature) which underlie the given class of dynamical
systems. At the practical level, it would be interesting to
test our “guiding potentials” Zn(x), with low order n,
as objective functions in minimization strategies like the
trajectory-based methods [5], in addition to the assessment
of DRIMAK’s performance on schemes involving a critical
number of elementary steps and/or chemical species.
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Fig. 1. Projection on the radical species subspace for the fictional
hydrogen combustion scheme in [12] under the stoichiometric constraints
2[H2] + 2[H2O]+ [H] + [OH] = 2, 2[O2] + [H2O]+ [O] + [OH] = 1.
All quantities are dimensionless; see [12] for the values of the kinetic
constants. The green dots are candidate points produced by DRIMAK;
the larger red marks are the points “filtered” by an ILDM-based post-
production screening. The grey circle corresponds to the equilibrium point.
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Abstract—Different approaches to obtaining efficient and 

accurate reduced models for mixture-averaged diffusion 

(MAD) are proposed. The first approach is extended from the 

previous diffusive species bundling, in which species with 

similar binary diffusion coefficients are bundled to reduce the 

size of the binary diffusion coefficient matrix. To further 

improve the computational efficiency, the entries in the bundled 

binary diffusion coefficient matrix with non-negligible 

contribution to species MAD coefficients are identified based on 

sampled reaction states, and the other entries can be ignored. 

The second approach is based on the observation that, in the 

premixed fuel/air combustion, species MAD coefficients can be 

approximated with their binary diffusion coefficients with 

respect to N2 while only inducing small errors. Therefore, the 

computational cost of evaluating MAD can be reduced from a 

quadratic to a linear function of the number of species. This 

approach can be further combined with species bundling to 

achieve even higher efficiency. These approaches are tested in 

1D stretched and unstretched laminar flames under various 

conditions. A posteriori validation is performed using turbulent 

premixed DNS data. The results show good accuracy and 

significantly improved efficiency compared with the detailed 

MAD model. 

I. INTRODUCTION 

Accurate modeling of molecular diffusion is important to 
predict many combustion problems such as near-limit flame 
behaviors and premixed flame propagation [1-3]. The 
mixture-averaged diffusion (MAD) model using the Curtiss-
Hirschfelder approximation [4] has been widely used in flame 
simulations due to the relatively low computational cost and 
good accuracy in many cases compared with the multi-
component models [5]. The computational cost of the MAD 
model is typically dominated by the evaluation of the binary 
diffusion coefficient matrix, which scales as a quadratic 
function of the number of species. To reduce the 
computational cost of the MAD model for large reaction 
mechanisms, Lu & Law [6] developed a method to bundle the 
diffusive species with similar diffusivities, such that the 
computational cost of evaluating binary diffusion coefficients 
can be reduced to a quadratic function of the number of 
diffusive groups. In the present study, the species bundling 
method is extended, such that the computational cost 
associated with the MAD model can become mostly 
negligible in CFD simulations. 

II. METHODOLOGY 

A. A reduced MAD model based on species bundling 

The species diffusion velocity, 𝑽 , evaluated with the 
bundled MAD model without thermal diffusion and other 
correction effects can be written as [6]  

𝑽𝑖 = −𝐷̅𝑖
∇𝑋𝑖
𝑋𝑖

, 𝐷̅𝑖 =
1 − 𝑌𝑖

𝑄g(𝑖) −
𝑋𝑖

𝐷𝐺g(𝑖),g(𝑖)

, (1a) 

𝑄𝑛 = ∑ 𝑄𝑛,𝑚

𝐾𝐺

𝑚=1

, 𝑄𝑛,𝑚 =
𝑋𝐺𝑚
𝐷𝐺𝑛,𝑚

, 𝑋𝐺𝑚 = ∑ 𝑋𝑙
g(𝑙)=𝑚

, (1b) 

where 𝐷̅𝑖, 𝑌𝑖 and 𝑋𝑖 are the MAD coefficient with bundling, 
mass fraction and mole fraction for the ith species, 
respectively. g(𝑖) is the group number of the ith species. KG 
is the number of species groups. 𝐷𝐺𝑛,𝑚 is the binary diffusion 
coefficient between the representative species of group n and 
m. 𝑋𝐺𝑚 is the summation of species mole fractions in group 
m. For clarity, a matrix Q is defined with 𝑄𝑛,𝑚 being the entry 

at the nth row and mth column. 𝑄𝑛 is the summation of the 
nth row of matrix Q.  

It is seen from (1b) that the binary diffusion coefficients, 
𝐷𝐺𝑛,𝑚 , for some species may only have negligible 

contribution to 𝐷̅𝑖 of the other species, e.g. if these species 
always stay in low concentrations. The binary diffusion 
coefficients involving such unimportant species can therefore 
be ignored. To quantify the importance of 𝑄𝑛,𝑚  to 𝑄𝑛 , an 

important index, 𝐼𝑛,𝑚, is defined as 

𝐼𝑛,𝑚 ≡
|𝑄𝑛,𝑚|

𝑚𝑎𝑥
𝑗=1,𝐾𝐺

|𝑄𝑛,𝑗|
, (2) 

and compared with a user-specified threshold value, such that 
the unimportant entries can be eliminated from (1) for 
reduced computational cost.  

B. A linear-time reduced MAD model for premixed fuel/air 

combustion 

For premixed fuel/air combustion, where N2 is typically 
abundant, the species MAD coefficient can often be 
approximated with its binary coefficient with respect to N2: 

𝑽𝑖 = −𝐷̅𝑖
∇𝑋𝑖
𝑋𝑖

, 𝐷̅𝑖 = 𝐷𝑖,𝑁2 . (3) 

Compared with the detailed MAD model, the computational 
cost of evaluating species diffusivities is reduced from the 
quadratic function O(K2) to a linear function O(K), where K 
is the number of species. This method can be further 
combined with species bundling, i.e. 

𝑽𝑖 = −𝐷̅𝑖

∇𝑋𝑖
𝑋𝑖

, 𝐷̅𝑖 = 𝐷𝐺g(𝑖),𝑔(𝑁2) , (4) 

such that the computational cost is reduced to O(KG). 

III. RESULTS AND DISCUSSIONS 

A 24-species reduced model for n-dodecane [7] is used to 
demonstrate the performance of the reduced MAD models in 



1D laminar premixed flames. The species are first bundled 
into 14 groups and the unimportant entries in (2) are 
eliminated using an error threshold of 0.1. Fig. 1(a) shows the 
sparse pattern of the matrix Q, with the black pixels indicating 
the important entries identified based on reaction states 
sampled over a wide range of conditions with equivalence 
ratio of 0.5-1.5, pressure of 1-10 atm, and inlet temperature 
of 300 K for perfectly stirred reactors (PSR) and initial 
temperature of 1000-1600 K for auto-ignition. It is observed 
that, the 14-group bundled MAD model can be reduced to a 
3-group reduced MAD model, i.e. only 3 important columns 
are retained in Q. Fig. 1(b) compares laminar flame speed and 
global extinction strain rate of premixed counterflow flames 
as a function of equivalence ratio, calculated with different 
MAD models. It is seen that the results from the reduced 
models agree tightly with the detailed MAD model. 

 
Fig. 1 (a) Sparse pattern of Q for the 3-group reduced MAD model. (b) 
Laminar flame speed and global extinction strain rate as a function of 
equivalence ratio, calculated with different MAD models. “Detailed” 

indicates the results calculated with the detailed MAD model without any 
simplification. “Bundled” and “Reduced” indicate the 14-group bundled 

and 3-group reduced models given in (1) and (2), respectively. “𝐷𝑖,𝑁2” and 

“𝐷𝐺g(𝑖),g(𝑁2)” represent the linear-time reduced model and combined with 

species bundling given in (3) in (4), respectively. 

To further demonstrate the accuracy of the reduced models, 
a 2D strongly turbulent premixed DNS flame of n-butane/air 
[7] is used for a posteriori validation. The DNS simulated a 
premixed flame propagating into fresh mixture at temperature 
of 500 K with an equivalence ratio of 0.6 and pressure of 5 
atm. The solution at the time of 0.4 ms is used for current 
analysis, and the temperature field is plotted in Fig. 2(a). With 
an error threshold of 0.1, 25 species are first bundled to 10 
groups. 3 important groups are further identified based on 
reaction states sampled over the parameter range with 
equivalence ratio of 0.6-0.9, pressure of 1-5 atm, and inlet 
temperature of 300 K for PSR and initial temperature of 1000-
1600 K for auto-ignition. For each grid point, the species 
diffusivities are calculated with different MAD models using 
the local condition. The detailed MAD model is taken as the 
base model, and relative errors in species diffusivities are 
measured for different reduced models and plotted in Fig. 
2(b). The worst-case error at each grid indicates the maximum 
error in diffusivities for all the species. The worst-case errors 
for the 10-group bundled and 3-group reduced models (red 
and blue) are effectively controlled by the error threshold. 
The worst-case errors for the linear-time reduced model with 
or without species bundling (olive, magenta and cyan) are 
within about 10%. Note that the worst-case error is less than 
5% if excluding the errors in the diffusivity of N2 (cyan). 

The speedup factors of the reduced models for n-dodecane 
and n-butane are summarized in Table I. The speedup factors 

are measured by comparing the CPU time of one time 
evaluation of species diffusivities using the reduced MAD 
models with that of the detailed MAD model. Significant 
speedup is observed for all the cases, particularly for the 
linear-time reduced model combined with species bundling. 

 
Fig. 2 (a) Temperature contour for the 2D DNS of n-butane/air at time of 

0.4 ms. (b) Worst-case errors in species diffusivities as functions of 
temperature, calculated with different reduced MAD models. 

 

TABLE I. Speedup factors of different MAD models 

MAD models 
Speedup factors 

n-dodecane n-butane 

Bundled 2.5 (14 groups) 4.4 (10 groups) 

Reduced 3.8 (3 groups) 5.6 (3 groups) 

𝐷𝑖,𝑁2 31.7 32.3 

𝐷𝐺g(𝑖),g(𝑁2) 44.5 61.6 

IV. CONCLUSIONS 

Approaches to obtaining efficient and accurate reduced 
MAD models are proposed and tested for laminar flame speed 
and extinction of 1D premixed counterflow flames of n-
dodecane/air. A posteriori validation of species diffusivities 
evaluated with different reduced MAD models is performed 
using 2D DNS data for n-butane/air, showing the worst-case 
errors of less than about 10%. CPU time is measured for the 
reduced MAD models and compared with the detailed MAD 
model. Speedup factors of ~45-60 are observed for the linear-
time reduced model combined with species bundling for n-
dodecane and n-butane, respectively. 
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Identification of Low-Order Dynamics in
Turbulent Premixed Flames with Dynamic Mode

Decomposition
Temistocle Grenga ∗, Jonathan F. MacArt∗, Michael E. Mueller∗
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Abstract— Dynamic Mode Decomposition (DMD) has
emerged as a promising tool for the investigation of unsteady
and dynamic phenomena. In this work, DMD is applied to the
investigation of broadband phenomena in turbulent premixed
flames using large-scale DNS data. A new, efficient parallel
implementation of DMD has been developed for analysis
of large-scale DNS databases. This is then used to identify
coherent modes in turbulent premixed flames and provide
insights into the dynamical features of such flames.

I. INTRODUCTION

DMD, first developed by Schmid [1], is a powerful
method for analyzing the dynamics of nonlinear systems
using data generated from either computations or experi-
ments. In its application to fluid dynamics and combustion,
DMD is able to identify the low-order dynamics describing
the flow field described by the infinite-dimensional Navier-
Stokes equations. DMD modes are a numerical approxima-
tion to Koopman modes, which represent nonlinear, finite-
dimensional dynamics without linearization. The identi-
fied flow structures are unbiased by energy, so they are
particularly well suited to probing dynamic processes at
scales smaller than the largest, energy-containing scales.
The eigenvalues corresponding to the DMD modes are the
Ritz values, and they provide a characteristic frequency
and growth/decay rate for each mode, which allows for
understanding the role of nonlinear structures in turbulent
combustion. These coherent structures, spanning multiple
time and length scales, are locally transient and non-linear,
may not obey Taylor’s hypothesis of frozen turbulence, and
cannot be identified with statistical analysis.

In this work, DMD is used as a tool to analyze three-
dimensional DNS of a low Mach number spatially-evolving
turbulent planar hydrogen/air premixed jet flame. The focus
of this investigation will be on the practical use of DMD
for analyzing large datasets as well as the identification of
the dominant modes and their characteristics in broadband
turbulent premixed flames.

II. DMD ALGORITHM

Consider a sequence of data vectors xk ∈ Rn containing
the variables in a multidimensional domain at a single snap-
shot in time, where m is the number of snapshots forming

the sequence of data and n is the dimension of the vector.
These vectors are arranged into a matrix of dimension n×m,
X = [x1, . . . ,xm−1]. It is assumed that a linear tangent
approximation, or rather that an unknown linear mapping
A, relates a snapshot to the next one xk+1 = Axk. The
DMD modes and Ritz values are an approximation of the
eigenvectors and eigenvalues of A, which, to this point,
remains unknown.

The original DMD algorithm [1] is strongly related to
Koopman operator theory. An approximation of A, Ã, is
constructed through the SVD of X , which is then de-
composed further to determine the DMD modes and Ritz
values. For very large systems, this algorithm is inefficient
or even computationally intractable since the size of the data
snapshot vectors can be tens of millions and hundreds or
thousands of snapshots could be considered.

Tu et al. [2] created a memory efficient algorithm that
requires the loading in memory of only two snapshots at a
time, so the algorithm can be applied to very large datasets.
Moreover, they computed the SVD of X using the method
of snapshots introduced by Sirovich [3]. This algorithm, in
the version used in this work, has been further improved by
Belson et al. [4], eliminating unnecessary inner products
and linear combinations.

In this algorithm, the correlation matrix is defined as
the inner product of the various snapshot having elements
[H]i,j =< xi,xj >, where the indices i and j have the
range 1, . . . ,m − 1. The eigenvectors of the correlation
matrix are computed HW = W Σ̃ in order to define Ã as
Ã = Σ̃1/2W ∗[H

′
H

′′
]W Σ̃1/2, where H

′
= [H]1:m−1,2:m−1

and H
′′

=< xm,xj >, with j = 1, . . . ,m−1. After solving
the eigensystem for Ã, ÃṼ = ΛÃ, the scaled DMD modes
are given by

φj =

m∑
i=1

λm−1
i xi[T ]i,j (1)

where T = W ∗Σ̃1/2Ṽ D and D is a diagonal matrix having
diagonal d = (Ṽ ∗Ṽ )−1Ṽ ∗Σ̃1/2Ṽ ∗[H]1:m−1,1.

The algorithm has been implemented in two codes in
order to maximize the computational efficiency. The first
code is devoted to the the evaluation of H and H

′′
, which

is distributed over a large number of cores, ideally one



element per core. Due to the size of the snapshots, it is not
possible to load in memory more than two snapshots nor is
redistribution of the data through all-to-all communication.
Therefore, the second code evaluates the eigensysytem of
H and Ã, as well as the DMD modes. The evaluation of
the eigensystems is computationally inexpensive because of
small dimensions of the matrices. However, evaluation and
output to disk of the DMD modes (Eq. 1) requires large I/O
bandwidth.

III. RESULTS

To generate the DNS database, the Navier-Stokes equa-
tions are solved in the low Mach number limit using a
semi-implicit iterative algorithm of Desjardins et al. [5],
implemented in the code NGA, and recently updated for
the solution of the species equation [6]. The numerical sim-
ulations include spatially-developing coflowing Cartesian
planar jets at Re = 5000, in a domain having dimensions
12D × 24D × 3D in the streamwise (x), cross-stream (y)
and spanwise (z) directions, respectively. The boundary
conditions are inflow on the −x face, outflow on +x one,
free slip on ±y faces, and periodic in the z-direction. A
central jet of height D = 4.32 mm is separated from
two coflow jets by thin walls. The central jet consist of
a stoichiometric hydrogen-air mixture at a temperature of
300 K, diluted 80% by mass with nitrogen at 23.35 m/s. The
coflow jets have heights 4.5D and consist of equilibrium
products of combustion at 116.42 m/s. A slow bulk flow
of equilibrium products at 10 m/s is placed near the top
and bottom boundaries. A nine species hydrogen chemical
kinetic model [7] is used.

The subdomain considered for the DMD analysis has
dimensions 7D × 4D × 1D in the x-, y-, and z- direction,
respectively. The subdomain contains almost five million
grid points, so the snapshot dimension is n ≈ 3 × 107

since six variables (the three velocity components, the
temperature, and the mass fractions of OH and H2O) are
considered. The number of snapshots considered is up to
m = 400, spaced in time with ∆t = 2µs. In total, for this
DMD analysis, 12 billion data values are used. This amount
of data makes the standard DMD algorithm impossible to
perform, but an efficient parallel implementation of the
snapshot algorithm presented above requires approximately
25,000 CPU-hours to perform the analysis.

Figure 1(a) shows that all the Ritz values for the case
m = 400 are close to the unit circle, while the values for
m = 20 are inside the unit circle. The eigenvalues lying
outside the circle would identify unstable modes, while the
ones lying inside identify stable modes, with the distance
from the circle a measure of the explosive/dissipative nature
of the modes. The Ritz eigenvalues are further transformed
into the complex stability plane through the logarithmic
transformation µi = log(λi)/∆t. The real part of µi is
the exponential growth or decay rate of the i-th mode,
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Fig. 1. (a) Ritz values on the complex plain, and (b) L2-norm of the
amplitude of the modes.

Fig. 2. Example of DMD modes: (a) mode 1 and (b) mode 4.

while the imaginary part represents the temporal frequency.
Figure 1(b) shows the amplitude of each mode (L2-norm)
versus the temporal frequency. For both dataset sizes, the
mode amplitude decays rapidly with increasing temporal
frequency. The smaller dataset is qualitatively similar to the
larger dataset, but the frequencies are not exactly the same,
as anticipated from the fact that the Ritz values did not lie
on the unit circle. Moreover, the smaller number of modes
do not allow adequate resolution of the dominant reacting
flow structures.

Figure 2(a) shows mode 1, having µ1 = 0, which repre-
sents the time-averaged flow and captures the steady flow
structures. Mode 4 in Fig. 2(b) is a low-frequency mode
containing the large scale turbulence structures resulting
from a combination of shear and chemical reaction.
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Abstract—A Multiscale Adaptive Reduced Chemistry Solver 
(MARCS) is developed by integrating the Correlated Dynamic 
Adaptive Chemistry and Transport (CO-DACT) method and 
Hybrid Multi-Timescale (HMTS) and G-Scheme method 
together to conduct the efficient combustion modeling with 
detailed chemical kinetics. The in-house Full Speed Fluid code 
are further utilized to compute convection fluxes and transport 
processes. The preliminary results of ignitions and flame 
propagations in this paper demonstrate that the computational 
efficiency can be improved by orders of magnitude using CO-
DACT method with HMTS and G-Scheme methods. In the final 
presentation, simulations of a two-dimensional jet flame and an 
oblique shock induced auto-ignition with detailed mechanisms 
will be conducted to validate the present algorithm. 

I. INTRODUCTION 
The large and detailed chemical kinetics have been 

challenges in combustion modeling for decades. The first 
challenge comes from the stiff ODE system which govern the 
chemical reactions. In a chemical reaction system, the 
characteristic time of different species can vary from 
millisecond to picosecond and even beyond. In order to 
integrate the stiff ODE system efficiently, advanced time 
integration methods are required. Several chemical solvers 
have been developed in last decades, among them, the HMTS 
method[1] and the G-Scheme method[2,3] have the potential 
to be integrated together and provide an efficient integration 
for detailed chemical kinetics. 

The second challenge of utilizing detailed chemistry in 
simulations is the size of chemical mechanism that 
proportionally increases number of degrees of freedom of the 
problem. In order to reduce the number of species and 
reactions in simulations, several methods have been 
developed. Among these methods, the Correlated Dynamic 
Adaptive Chemistry (CO-DAC) method[4] can provide 
locally reduced mechanism on-the-fly without generating 
overhead CPU time cost. 

Another challenge comes from the accurate calculation of 
transport properties for a large number of species. Indeed, 
these needs to be evaluated in all the cells and at each time 
step because they vary significantly across the temporal and 
spatial coordinates due to the rapid species and temperature 
variations caused by chemical reactions. Both the traditional 
multi-component diffusion model and mixture-averaged 
model become inefficient to be used when a large chemical 

mechanism is involved. The CO-DACT method[5] makes the 
computation cost of transport properties calculation 
negligible by conducting the transport properties calculation 
in phase space, and reducing the computational cost of two 
orders of magnitude. 

The goal of this paper is to present the MARCS method for 
an efficient numerical computation of combustion 
simulations by integrating the CO-DACT method, HMTS 
and G-Scheme method together with an in house Full Speed 
Fluid Solver. MARCS method will be here validated solving 
an oblique shock induced auto-ignition with detailed 
mechanisms. 

II. METHODOLOGY 

A. CO-DACT method 
In a combustion simulation, one cell in adjacent time steps 

or two different cells in the same time step may have similar 
thermodynamic conditions, which results in the same local 
reduced chemical mechanism and/or transport properties. 
Therefore, detailed calculations in similar cells are redundant. 
Based on this idea, the CO-DACT method examines 
computational cells in correlated space spanned by a few 
phase parameters. Similar cells in the correlated space will be 
grouped so that the detailed calculation for chemical 
reduction and transport properties is performed only once. 

B. HMTS and G-Scheme method 
Based on the locally reduced mechanism from the CO-

DACT method, the chemical reactions are integrated by 
HMTS or G-Scheme method. The solver automatically 
determines which method to use based on the combustion 
regime and the size of mechanism. 

C. Full Speed Fluid Solver 
The HMTS and G-Scheme methods are implemented into 

an in-house parallelized code, Full Speed Fluid Solver to 
simulate unsteady, compressible and reactive flows. The 
convection and diffusion terms are discretized with 3rd-order 
AUSMPW+ and central difference schemes respectively. A 
modified fully implicit lower-upper symmetric Gauss-Seidel 
(LU-SGS) scheme with Newton-like sub-iterations in pseudo 
time is taken as time marching method for solving the Navier-
Stokes equations. 



III. RESULTS AND DISCUSSION 
The preliminary results presented in this section are used 

to demonstrate the capability of the Full Speed Fluid Solver, 
CO-DACT and HMTS methods, respectively. The results of 
the 2D jet flame and oblique shock induced ignition will be 
included in the final presentation. 

Fig 1 shows the density contours in a double Mach 
reflection case calculated by the Full Speed Fluid Solver with 
AUSM+ (left) and AUSMPW+ (right) respectively. The 
computational domain is [0, 4] × [0, 1]. The lower boundary 
is set to be reflecting wall starting from x = 1/6. At t = 0, a 
right-moving 60o inclined Mach 10 shock is positioned at 
[1/6, 0]. The upper boundary is set to describe the exact 
motion of the Mach 10 shock. The left boundary at x = 0 is 
assigned with post-shock values. An outflow condition with 
zero gradients is set at x = 4. It is seen from this figure that 
the shock waves as well as the small structures near the up-
rolling region are well captured by both schemes. However, 
only the AUSMPW+ scheme adopted in the present solver 
can resolve structures along the contact line, which implies 
that the Full Speed Fluid Solver with AUSMPW+ scheme is 
more accurate and less dissipative near discontinuities. 

 
Fig. 1. Density contours of the double Mach reflection problem 

calculated by AUSM+ (left) and AUSMPW+ (right) schemes respectively. 

In order to demonstrate the computational efficiency of the 
CO-DACT method, the CPU time comparisons between 
VODE, HMTS, HMTS/CO-DAC and HMTS/CO-DACT 
methods in a premixed spherical propagating flame 
calculation is plotted in Fig. 2. It shows that for the VODE 
method the computational cost is mostly due to the chemistry 
integration cost. This cost is reduced by one order of 
magnitude using HMTS and even further using HMTS/CO-
DAC. In this latter case the evaluation of the transport 
properties is larger than the chemistry integration cost, 
however, using HMTS/CO-DACT this becomes negligible. 

 
Fig. 2. CPU time comparisons for CO-DACT. 

Fig. 3 shows the comparison of the computational cost 
between HMTS (blue) and G-Scheme (red) methods with 

different chemical mechanisms. It demonstrates that the 
dependency of CPU time on the mechanism size is first order 
and third order, respectively for HMTS and G-Scheme 
method. Therefore, the solver automatically switches to G-
Scheme method when the local reduced mechanism is smaller 
than 40 species and select HMTS method when the 
mechanism is larger, so that it can be more efficient. 

 
Fig. 3. CPU time comparison between HMTS and G-Scheme. 

IV. CONCLUSION 
The capability of the in-house Full Speed Fluid Solver and 

the efficiency of the CO-DACT, HMTS and G-Scheme 
methods are demonstrated in the preliminary results. The 
parallel Full Speed Fluid Solver can handle large scale and 
multi-dimensional simulations. The CO-DACT, HMTS and 
G-Scheme methods are able to accelerate the combustion 
modeling by orders of magnitude. Therefore, by integrating 
them together, the proposed MARCS method has the 
promising potential to conduct combustion modeling in large 
domain and multi-dimensional geometry with detailed 
chemical kinetics in order to investigate complicated 
coupling between chemistry and transport. 
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Abstract—Numerical simulations of supersonic reacting 

mixing layers using high-order numerical schemes with 

detailed and reduced kinetic mechanisms were conducted. 

Two interesting differences between the instantaneous fields 

based on the two mechanisms are observed, which implies the 

necessity of a reasonable mechanism in computations. 

I. INTRODUCTION 

The flow and combustion of supersonic reacting mixing 
layer are typical phenomena in the combustion chamber of 
hypersonic air-breathing propulsion system. Understanding 
the mechanisms involved is of great importance for the 
human beings to overcome the problems encountered. In the 
past three decades, a number of researches on flow and 
combustion of supersonic reacting mixing layers were 
conducted computationally using different methods [1-12]. 
Some of them utilized laminar simulation [1-6] while others 
used turbulent simulation [7-12]. The reaction mechanisms 
employed in these works included global mechanism [1, 7], 
reduced mechanism [2, 4] and detailed mechanism [3, 5-12]. 

  Generally, the global mechanism is not accurate enough 
for the prediction of ignition process [7], although recent 
simulations of combustion in scramjets often adopt this kind 
of mechanism. The reduced mechanism is able to identify 
some characteristics of ignition process [4], while the 
reduction method should base on reasonable assumptions [2]. 
The detailed mechanism is the most accurate choice, but a 
large amount of computational resource is needed. 

  The present work attempts to conduct high-accuracy 
numerical simulations of supersonic reacting mixing layers, 
using both reduced and detailed reaction mechanisms. High-
accuracy numerical simulations are now useful methods to 
investigate the mechanisms involved in flow and 
combustion, and are also effective means to compare the 
performances of various reaction mechanisms. In the 
following, physical and mathematical models as well as 
computational methods are described briefly in section II. 
After that, results and discussions are given in section III. 
Finally, conclusions are drawn in section IV. 

II. MODELS AND METHODS 

The physical model in this study is a supersonic H2/air 
reacting mixing layer. Near the interface of the two 
freestreams, physical interactions will happen and lead to a 
turbulent shear layer region. After the fluids mix on a 
molecular scale, there may be chemical reactions in the 
turbulent shear layer region [13]. 

The basic equations for such supersonic reacting mixing 
layer are multi-component Navier-Stokes equations [14]. 
The reduced H2-O2 reaction mechanism consists of 8 
elementary reaction steps [15] while the detailed mechanism 
consists of 19 elementary reaction steps [16].  

The initial vorticity thickness 0 for the flow is taken as 
410-4m. The sizes of computation domain in streamwise, 
transverse and spanwise directions are 6000, 1000 and 
500, respectively. The computational grid is uniform in 
streamwise and spanwise directions, but is refined in 
transverse direction in the turbulent shear layer region. The 
number of grid points is about 6000000 and the streamwise, 
transverse and spanwise minimum spacing are 0.740, 
0.500 and 0.720, respectively. This spacing is small 
enough compared with the recent DNS of supersonic 
reacting mixing layer [17]. 

The convective term is discretized by a fifth-order 

compact-WENO hybrid scheme [18]. The diffusion term is 

discretized by a sixth-order compact scheme [19]. The 

source term is treated with point-implicit scheme [20]. The 

unsteady term is integrated with Runge-Kutta scheme [18]. 

III. RESULTS AND DISCUSSIONS 

Based on the above models and methods, instantaneous 
fields of various properties are obtained. Two key 
phenomena will be analyzed briefly in this extended abstract. 

The first key phenomenon is about combustion patterns. 
Fig. 1 compares the rate of heat release per unit volume in 
the two cases. It shows that the combustion happens earlier 
in the case based on detailed mechanism. The O2 mass 
fraction in Fig. 2 and the H2 mass fraction in Fig. 3 together 
show that in both cases the turbulent shear layer regions are 
fuel-rich but in the case based on detailed mechanism the O2 
are consumed away earlier. Different combustion patterns 
(premixed, partially premixed and diffusion combustion) 
appear in the two cases. This phenomenon may due to the 
difference of ignition delay times between the reduced and 
detailed mechanisms. 

 

(a) Detailed mechanism                     (b) Reduced mechanism 

Fig. 1 Distribution of rate of heat release per unit volume at t=6.410-4s 



 

(a) Detailed mechanism                  (b) Reduced mechanism 

Fig. 2 Distribution of O2 mass fraction on zmax plane  at t=6.410-4s 

 

(a) detailed mechanism                 (b) reduced mechanism 

Fig. 3 Distribution of H2 mass fraction on zmax plane  at t=6.410-4s 

The second key phenomenon is about combustion 
induced shock-wave. Fig. 4 and Fig. 5 compare the pressure 
and density in the two cases. It is shown that the freestream 
pressure and density distributions before the ignition 
position in the two cases are similar. However, after the 
ignition position, large differences appear. The freestreams 
pressures and density rise earlier in the case based on 
detailed mechanism. This pressures and density rise is 
caused by shock waves which are shown in Fig. 6 using the 
iso-surfaces of normal Mach number. This is the 
phenomenon of combustion induced shock-wave in 
supersonic mixing layer [12]. 

 

(a) Detailed mechanism                     (b) Reduced mechanism 

Fig. 4. Distribution of pressure on zmax plane  at t=6.410-4s. 

 

(a) Detailed mechanism                     (b) Reduced mechanism 

Fig. 5. Distribution of density on zmax plane  at t=6.410-4s. 

 

(a) Detailed mechanism                     (b) Reduced mechanism 

Fig. 6. Iso-surfaces of normal Mach number at t=6.410-4s. 

In all, the instantaneous fields in the case based on 
detailed kinetic mechanism are much different from that 
base on reduced kinetic mechanism. 

IV. CONCLUSIONS 

Since the effect of kinetic mechanisms on the results of 
computation is nontrivial, the importance of adoption of a 
proper kinetic mechanism in the high-accuracy numerical 
simulations of supersonic reacting mixing layers should be 
emphasized. A reasonable kinetic mechanism is necessary 

for the understanding of flow and combustion of supersonic 
reacting mixing layer through numerical simulations. 
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Abstract— We outline a strategy for chemical kinetic model
reduction under uncertainty. We present highlights of our existing
deterministic model reduction strategy, and describe the extension
of the formulation to include parametric uncertainty in the
detailed mechanism. We discuss the utility of this construction, as
applied to hydrocarbon fuel-air kinetics, and the associated use
of uncertainty-aware measures of error between predictions from
detailed and simplified models.

I. INTRODUCTION

Chemical model reduction strategies generally start from
a detailed chemical kinetic mechanism as the reference or
baseline gold-standard. Given this standard, a specified range
of operating conditions or set of state vectors, a select set of
Quantities of Interest (QoIs), and a requisite error threshold, a
model reduction strategy produces a simplified mechanism of
associated size/complexity [1], [2].

This strategy, despite its effectiveness, nonetheless relies on
the quality of the starting mechanism. Yet, there is typically
significant uncertainty in both the structure of available detailed
mechanisms for hydrocarbon fuels, and their thermodynamic
and chemical kinetic rate parameters. Therefore, in princi-
ple, the analysis/reduction processes that provide simplified
mechanisms starting from the detailed mechanism, and the
measures of quality of a simplified mechanism relative to
the detailed mechanism, need to account for both model
and parametric uncertainties in both mechanisms. This is a
challenging, yet highly relevant topic. Overconfidence in the
detailed mechanism can lead to a misplaced focus on tight error
tolerances in the simplified model, relative to a faulty/uncertain
baseline. Simplified-model errors ought to be handled along
with detailed-model uncertainties in the same error budget. Any
error norm between simplified and detailed models ought to be
weighted appropriately with attendant uncertainties. Moreover,
the fact that both the detailed and simplified mechanisms
are burdened with uncertainty suggests that any measures of
distance between their predictions be done in a probabilistic
context. This line of reasoning highlights the need for rethink-
ing model analysis/reduction strategies for uncertain chemical
kinetic models.

The above is a significant undertaking with a range of
technical challenges. There has been some work addressing
model reduction under uncertainty in the context of proper
orthogonal decomposition (POD) [3], albeit for small degrees
of uncertainty. The dynamical analysis of uncertain ordinary

differential equation (ODE) systems has also received some
attention [4], [5], in a full probabilistic setting. However
the challenge of dynamical analysis and uncertain chemical
model simplification in hydrocarbon kinetics of relevance to
combustion has yet to receive significant attention.

We lay out in the following a general strategy for analy-
sis and reduction of uncertain chemical kinetic models, and
describe its utilization in the context of ignition of hydrocar-
bon fuel-air mixtures. The construction is fully probabilistic,
allowing for an arbitrary uncertainty structure. It is based on
an existing analysis and reduction strategy, using computational
singular perturbation (CSP) analysis [6], [7], that has been used
extensively for deterministic models of hydrocarbon fuels [1],
[2].

II. METHOD

Consider a detailed chemical mechanism M∗(λ), defined by
a set of species S∗ = {S1, . . . ,SN} and elementary reactions
R∗ = {R1, . . . ,RM}, where λ is the relevant vector of uncertain
parameters, e.g. the Arrhenius rate parameters of all reactions.
Consider the auto-ignition process of a hydrocarbon fuel-air
system in a constant pressure batch-reactor, for a range of
initial temperature and stoichiometry, which is used to compute
a set of ignition trajectories, providing a database of states
D = {X (1), · · · ,X (K)}, where X (k) ∈ RN+1 is the k-th state
vector, composed of temperature and the N mole fractions, in
the database, with k = 1, . . . ,K. Given that λ is uncertain, let
Dλ denote the database computed for a given value of λ.

For any given Dλ, and considering a given set of QoIs - such
as the set of target species - and a tolerance τ on Importance
Indices, the CSP-based analysis and simplification strategy
provides a simplified mechanism Mτ(λ), being a subset of the
starting mechanism with species Sτ(λ) and reactions Rτ(λ).
In fact, given the starting model specification, the simplified
model can be specified compactly in terms of a vector of M
binary indicators ατ(λ) = (ατ

1(λ), . . . ,α
τ
M(λ))T , where

α
τ
r(λ) =

{
1 for reaction Rr ∈ Rτ(λ)

0 otherwise.
, r = 1, . . . ,M (1)

In fact, ατ(λ) is a multi-index that specifies 2M models. We can
view the process of database generation, analysis, and model
simplification as an input-output map:

fτ(λ) : λ→ α
τ(λ), (2)



which provides a convenient abstraction for the use of uncer-
tainty quantification (UQ) methods to account for uncertainty
in λ in the process of simplified model selection.

Generating n random samples from p(λ), {λ(1), · · · ,λ(n)},
the input-output map of Eq.(2) provides corresponding samples
{ατ j}n

j=1, where ατ j = ατ(λ( j)), so that we can estimate, ∀α =
(α1, · · · ,αM), the joint probabilities,

Pτ(α)≈
1
n

n

∑
j=1

δατ jα (3)

where δατ jα is the Kronecker delta, which is equal to 1 if α =
ατ j and 0 otherwise. Thus, the contribution of each sample j
to the sum for Pτ(α) in Eq. (3) is 1 if ατ j =α, and 0 otherwise.
Further, we have

δατ jα =
M

∏
i=1

δ
α

τ j
i αi

. (4)

The joint probabilities provide a wealth of information on the
coupling among reactions. For example, marginalizing over
M−2 reactions, provides the 2-way joint probabilities for any
two given reactions (p,q),

Pτ(αp,αq)≈
1
n

n

∑
j=1

δ
α

τ j
p αp

δ
α

τ j
q αq

. (5)

This provides information on the relevance of two reactions
p and q being included/excluded jointly or separately in the
model. Similarly, this analysis can be generalized to any subset
of reactions forming a pathway of interest. Moreover, extending
the scope to a full sub-mechanism, the joint picture provides a
statement concerning the probability of any given mechanism
that is a subset of the detailed model. One can thus select the
model with the highest P(α) as the one most supported by the
reduction strategy.

However, the complexity of the joint-picture can raise the
need for large numbers of samples to establish multivariate
statistics, in which case we may confine ourselves to the
marginal probabilities for individual reactions,

Pτ(αi)≈
1
n

n

∑
j=1

δ
α

τ j
i αi

, i = 1, . . . ,M. (6)

With this, and since δ
α

τ j
i 1 ≡ α

τ j
i , the marginal probability that

a reaction is included in the simplified mechanism for a given
τ, is given by

Pτ
i = Pτ(αi = 1)≈ 1

n

n

∑
j=1

α
τ j
i . (7)

In this way, we arrive at a proposed marginal strategy for model
reduction under uncertainty, whereby a reaction is included
in the simplified mechanism for a given τ, when its marginal
probability satisfies Pτ

i > θ, where 0 < θ < 1 is a user-specified
threshold.

III. DISCUSSION

We have used the above construction for simplification of un-
certain methane-air and n-butane-air mechanisms with specified
uncertainty in pre-exponential rate constants, based on con-
stant pressure homogeneous ignition computations. We have
explored convergence of the results as a function of the size of
the database, as well as the number of random samples. We also
explored requisite means of error estimation, relying e.g. on the
uncertain prediction of lumped quantities such as ignition-time,
or on the comparison of uncertain time-trajectories, given the
detailed mechanism and a simplified mechanism. In this last
context, whether comparing nominal predictions weighted with
uncertainty, or relying on probabilistic measures of difference
between uncertain predictions, we employ error estimates that
are informed by uncertainty. We examined the advantage that
a general user, who might not be necessarily interested in
uncertain predictions but rather in deterministic predictions
from robust reduced mechanisms, can derive from the use
of a simplified mechanism generated through the proposed
probabilistic approach. Lastly, we explored the outcomes of the
models with the highest P(α), as an alternative to the strategy
relying on marginal probabilities only. We will present the
above construction, and illustrate its use in the simplification
of uncertain detailed kinetics of n-butane.
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Abstract—Large eddy simulations (LESs) for turbulent flames 
with detailed mechanisms have received growing interest. 
However, a direct implementation of detailed mechanisms 
requires a vast amount of computational resources which 
limits the use of detailed mechanism in large-scale LESs. An 
on-the-fly mechanism reduction method named Correlated 
Dynamic Adaptive Chemistry (CODAC) is proposed to 
overcome this issue. A LES for Sandia Flame-D was 
conducted. An appropriate reduction threshold for CODAC 
was determined a priori based on 1-D freely propagating 
premixed methane-air flames. This reduction threshold was 
then used in the LES. The chemical mechanism used in the 
LES is GRI-Mech 3.0 with 53 species and 325 reactions. 
Predictions obtained with the LES are in good agreement with 
the experimental data. Results obtained by using CODAC are 
similar to those obtained by using the detailed mechanism 
without reduction procedures and the computational time is 
reduced by 33%, demonstrating the accuracy and efficiency of 
CODAC in LES. In particular, the CODAC method provides 
reliable predictions of intermediate species and radicals.  

I. INTRODUCTION 
Large eddy simulations (LESs) for turbulent flames with 

detailed mechanisms have received growing interest. 
However, using detailed mechanisms in LESs requires 
significant computational resources which limits the use of 
detailed mechanisms in large-scale LESs. 
Therefore, 1mechanism reduction methods are needed. 

For decades now, a large number of methods have been 
developed to reduce combustion mechanism models. 
Among the different methods, the dynamic adaptive 
chemistry (DAC) method [1, 2] is one of the most promising 
methods to be used in the LES. DAC is an on-the-fly 
reduction method that generates reduced mechanisms 
instantaneously and locally. Based on PFA reduction, the 
correlated DAC (CODAC) method [3, 4] was developed to 
avoid the redundant computation for similar grid points. 
CODAC method was found to be not only computationally 
efficient but also robust and accurate when it was applied to 
real jet fuel flame ignition and propagation problems. The 
PFA based DAC and CODAC have not been tested in such 
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configuration. The performance of the correlation and PFA 
algorithm has to be investigated in turbulent conditions.  

Therefore, in order to validate the CODAC method in 
flame LES, a simulation for the Sandia Flame-D is 
performed. The results of simulation are compared with the 
experimental data and with LES calculations involving the 
detailed mechanism without reduction procedure. 

II. NUMERICAL METHODS 
The turbulent flame tested in the present work is the well-

defined Sandia flame-D [5]. The flame is a piloted no-
premixed methane-air jet flame with Re = 22400.  

The LES runs on an in-house FORTRAN code designed 
for the low Mach number combustion simulations. The 
second order fully conservative finite difference scheme [6] 
is employed. Pressure and velocity is decoupled using the 
fractional step approach. The third order WENO scheme is 
applied for the scalar transport equation. Temporal 
advancement is solved using the second order semi-implicit 
Crank-Nicolson scheme. The thermal and transport 
properties and chemical reactions are solved coupled with 
Chemkin and Transport package. The sub-grid scale model 
is the dynamic Smagorinsky model. The turbulent 
combustion model is the PaSR model [7, 8]. The ODE 
solver of reaction source term is VODE. The computational 
domain is a cylinder with 300 mm in diameter and 600 mm 
in length. The grids resolution is 280×64×133 (x, φ, r) and 
there are 2.38 million points in total.  

Full GRI-Mech 3.0 [9] with 53 species and 325 reactions 
is used in the present LES study. The DAC method used in 
the present study is based on the PFA calculation [10]. Key 
radicals OH, HO2, CO and NO are preselected as important 
species. The reduction threshold is set as 0.1 a priori based 
on 1-D freely propagating premixed methane-air flame 
calculations. The correlation technic proposed by Sun et al. 
[3] is used in the present work to reduce further the 
computational time. The corresponding set of correlation 
thresholds εc is then defined as 10K for the temperature and 
0.01 for the mass fractions. 

III. RESULTS AND DISCUSSIONS 
Figure 1 shows instantaneous contours of temperature and 

number of species and reaction in the locally reduced 
mechanism. The size of the reduced mechanism is positively 



correlated to the local reactivity. The numbers of selected 
species and reactions are large in the flame region near the 
central line demonstrating the active creation and 
destruction of intermediate species and radicals in this 
region. On the other hand, these numbers are small in the 
region away from the flame as there is mainly the post-
burning production and the air co-flow. The average 
computational time per step without CODAC reduction is 
26902 s, while that with CODAC can be reduced to 18054 s, 
which is about a 33% reduction.  

Figure 2 shows the comparison of simulated results with 
conditional averaged experimental data with respect to the 
mixture fraction at x =15d. The comparisons indicate a good 
agreement between the simulated results and the 
experimental data for temperature and species. The 
distribution of scatters is in a broad region without 
unphysical conglomeration or void region. The simulated 
heat release rates are also plotted. The results without 
reduction agree well with the results obtained with CODAC, 
which demonstrates the accuracy of the CODAC reduction. 
The results of H2 are generally in good agreement with the 
experimental data, in spite that the peaks are over-predicted. 
For OH radicals, the profiles are also well reproduced, 
demonstrating the capability of the detailed mechanism and 
the CODAC reduction to predict minor species. 

IV. CONCLUSIONS 
In this work, CODAC reduction method has been 

employed in a LES for Sandia Flame-D turbulent flame. The 
results are compared with both experimental data and 
simulations performed without mechanism reduction. 
Simulated results of the LES for Sandia Flame-D with 
detailed GRI-Mech 3.0 and CODAC reduction are in good 
agreement with experimental data and results obtained by 
using detailed mechanism without reduction, demonstrating  

 
T (K)                        NS                           NR 

Fig. 1. Instantaneous contours of temperature (T in K), the number of 
activated species (NS) and the number of reactions (NR) in reaction 

mechanism for flame-D are plotted from the left to the right. 

 

 

 
Fig. 2. Scatter and conditional mean of simulated results without 

reduction and with CODAC reduction as well as the conditional mean of 
the experiment data for temperature (T in K), H2, CO and OH mass 

fractions at x = 15d. 
the accuracy and efficiency of using CODAC for a detailed 
mechanism in the LES. The number of species and reactions 
of local reduced mechanism is concentrated in the vicinity 
of the flame zone. The computational time of simulations 
with CODAC is reduced about 33% as compared to the 
simulation without reduction. The results have accurately 
reproduced the distributions of the intermediate species and 
radicals. 
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Abstract—An automated method for chemical kinetic model 
construction, reduction and optimization is developed to 
generate a reduced skeletal mechanism for the reacting flow 
modelling. Based on the database of chemical kinetics, the 
initial chemistry is created first. Then the model reduction and 
optimization are conducted to minimize the reduced 
mechanism to meet the pre-specified error requirements. The 
results show that this method can generate reduced kinetic 
models with high accuracy. An automated software, 
Automated Construction, Reduction and Optimization 
(ACRO), is developed for the application of this method on 
any reacting flow modelling. 

I. INTRODUCTION 

In reacting flow modelling, the application of detailed 
chemistries with hundreds of species and thousands of 
elementary reactions would be limited by the computer 
memory and computation time. In order to simplify the 
chemistry, several effective reduction methods have been 
proposed in the literature to obtain reduced skeletal 
mechanisms from detailed ones [1, 2].  

One of most efficient reduction approaches is the 
mapping/storage method, which uses the stored solution 
instead of the kinetics based differential equations during the 
simulation process, such as the application of orthonormal 
polynomials[3], in situ adaptive tabulation (ISAT) [4, 5] and 
piecewise implementation of solution mapping (PRISM)[6]. 
Another one is the lumping method which replaces the 
similar reactions or species with lumped ones, such as the 
non-linear lumping, constrained lumping [7], unconstrained 
lumping [8] and quasi-steady-state approximation (QSSA) 
based method. The mechanism reduction approach timescale 
analysis is also proved to be effective with accurately 
described slow subsystems which dominate the long-time 
behavior, such as QSSA [9], the partial equilibrium 
assumption (PEA), the computational singular perturbation 
(CSP) [10] and the intrinsic low dimensional manifold 
(ILDM) [11] methods. The reduction method which 
eliminate redundant species and reactions from detailed 
mechanisms based on the importance analysis to the 
parameters of interest are popularly used, such as the 
sensitivity analysis (SA) [12], optimization-based methods 
[13] and so on. The methods eliminating the redundant 
species according to the interaction coefficient analysis have 

been proved to have high efficiency, such as the directed 
relation graph (DRG) [14] and the path flux analysis (PFA) 
[15] method. 

In this paper, an automated method and software ACRO 
is developed to conduct chemistry construction, reduction 
and optimization to obtain an optimized reduced mechanism 
efficiently. 

II. METHODOLOGY 

A. Initial Chemistry Construction 

There are three basic datasets respectively for: chemical 
reaction mechanism, thermochemical properties, and 
transport properties. All the data are saved in CHEMKIN 
format. 

The chemical kinetic reactions are divided into two 
groups: one for high temperature reactions and the other one 
is low temperature reactions [16]. For the high temperature 
reaction group, there are several classes of reactions like 
unimolecular fuel decomposition reaction, H-atom 
abstraction reaction and so on. For the low temperature 
reaction group, there is oxygen addition to alkyl radical 
reaction, alkyl peroxy radical isomerization and so on. There 
are two ways to construct an initial chemical kinetic reaction 
mechanism: using the detailed chemistry directly or creating 
from the basic chemical kinetic mechanism database. 

B. Chemistry Reduction 

The method integrating path flux analysis (PFA) and 
sensitivity analysis (SA) is used automatically to generate a 
skeletal chemistry [15, 17].  As a key parameter to generate 
the smallest reduced mechanism, the error threshold value is 
adjusted automatically to satisfy the requirements of the 
modelling. 

C. Chemistry Optimization 

Similar to Ref. [18], the optimization based on reaction 
rules is adopted. According to the difference between the 
numerical data from the skeletal mechanism based 
modelling and the data from experiments or modelling using 
detailed mechanism, the kinetic parameters of the related 
reaction class can be optimized in the range of the 
uncertainties of reaction constants. 



D. Chemistry Evaluation 

The accuracy of the reduced mechanism can be assessed 
through comparison with prediction from the detailed 
mechanism or with experimental data. Normally the 
concentrations of selected species, ignition delay times and 
laminar flame speeds with different weight values in 
different working conditions are taken as the evaluation 
parameters. Besides the accuracy, the numbers of species 
and elemental reactions are also used to evaluate the 
computation efficiency. The final reduced skeletal 
mechanism is obtained by continuously eliminating the 
species or reactions until all the parameters satisfy the error 
requirements.  

E. Software Development 

As an integrated tool, the software can complete all 
processes including: chemistry construction, reduction and 
optimization. In order to get the simplest skeletal 
mechanism efficiently, several processes are run in parallel. 

The basic working algorithm for using this software is as 
follows: 

a. Define the basic components of the chemistry, 
including the fuel, oxidizer and diluents. If an existing 
chemistry is chosen directly, the components definition is 
not required. 

b. Define the key parameters and their error bounds. For 
example, the error bounds of ignition delay time, the 
adiabatic flame temperature, the laminar flame speed, and 
species can be specified. 

c. Select the basic models and initial conditions for model 
reduction and validation. 

d. Start the chemistry construction, reduction and 
optimization process, and the software will automatically 
generate an optimized skeletal mechanism with minimum 
number of species. 
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Fig. 1 Ignition delay time comparison between the detailed and skeletal 

mechanism 

III. RESULTS AND DISCUSSION 

Several skeletal mechanisms were obtained using the 
automated mechanism construction, reduction and 
optimization system ACRO.  The results show that this 
software can efficiently create different skeletal and detailed 
mechanisms to satisfy the error requirements of different 
reacting flow modelling. 

The high temperature ignition delay time comparison 
between the detailed and skeletal mechanism of n-heptane is 
shown as Fig. 1. Using the software, the skeletal with 65 
species and 254 reactions was obtained from the detailed 
one with 469 species and 1221 elemental reactions. 
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Abstract— In combustion simulations with uncertainty 

quantification, a large number of samples from the high-

dimensional uncertainty parameter space are needed to 

propagate the kinetic uncertainty to global combustion 

characteristics such as the ignition delay time. Recognizing that 

it is computationally challenging to perform so many individual 

turbulent combustion simulations, a novel approach is 

proposed to propagate the kinetic uncertainty through a low-

rank surrogate subspace as a replacement for the entire 

parameter space to reproduce the uncertainty on the quantity 

of interest. Specifically, the entire parameter space is projected 

onto the surrogate subspace via a transform matrix, which is 

optimized by using the generic algorithm, such that the 

projected samples can reproduce the uncertainty of the 

quantity of interest. We demonstrate the construction of the 

surrogate subspaces for a detailed hydrogen mechanism, with 

the probability distribution function of the ignition delay time, 

laminar flame speed and the extinction time in perfectly stirred 

reactor as the objective functions for the optimization. 

I. INTRODUCTION 

The assessment of the predictive capabilities of turbulent 
combustion models requires extensive validation of the 
simulation results against experimental measurements. 
However, isolation of the errors incurred by the turbulent 
combustion models in the simulations is difficult due to the 
possible uncertainties in initial/boundary conditions as well 
as those in other model components such as the chemical 
kinetic mechanisms. While careful burner design for 
laboratory-scale flames and detailed measurements of 
inflow/initial flow and composition fields can help to mitigate 
the uncertainties in the boundary/initial conditions, few 
methods exist to quantify the uncertainties in turbulent 
combustion simulations due to the uncertainties in chemical 
kinetics.  

For simple combustion problems such as homogeneous 
reactors and one-dimensional laminar flames [1-4], statistical 
methods have been developed to quantify the uncertainties in 
simulations arising from chemical kinetics. However, few 
works on chemical kinetic uncertainty quantification (UQ) 
for turbulent combustion simulations have been reported, 
while recognizing that it is computationally intractable to 
apply the above UQ procedure for simple combustion system 
to turbulent combustion simulations, as hundreds or 
thousands of samples are required to generate the output 
statistics. Mueller et al. [5] take advantage of the algorithm 
employed with the steady flamelet model by first propagating 
the kinetic uncertainty through the steady flamelet equations, 
producing a lower-dimensional joint distribution of the 
temperature, species mass fractions, and other derived 
quantities in the flamelet library. Then, only three ‘active’ 
quantities, i.e., density, molecular viscosity and molecular 
diffusivity, are needed to evolve the LES governing 
equations, of which only the uncertainty in the density is 
considered. Therefore, only few LES runs are required for its 

propagation. The algorithm is demonstrated with the Sandia 
flame D [6], and the results indicate that the uncertainty due 
to the kinetic rates is large enough to account for nearly all of 
the discrepancies between the LES results and experimental 
measurements. The approach, although efficient, is 
nevertheless limited to turbulent combustion simulations with 
flamelet-like combustion models. 

In this work, a novel approach, compatible with various 
combustion models, is proposed to propagate the chemical 
kinetic uncertainty in turbulent combustion simulations, in 
which the simulation uncertainties are quantified through 
performing samples from a very low dimensional surrogate 
subspace of the kinetic parameters. Homogeneous reactors 
and laminar flames at the representative thermo-chemical 
conditions of target turbulent combustion applications are 
simulated prior for the identification of the surrogate 
subspace, which aim to reproduce the probability density 
function (PDF) of key combustion characteristics such as the 
ignition delay time, the flame speed as well as the extinction 
strain rate from the original high-dimensional parameter 
space. In the following, the methodology is presented and 
identification of the surrogate subspace is demonstrated using 
a 33-step detailed hydrogen mechanism [8]. 

II. METHODOLOGY 

A. Propagation of kinetic uncertainty 

Following previous works [1-3, 7, 8], the reaction rate 
coefficients are presumed to be independent and 
characterized by a lognormal distribution with a median value 
kj0 and a temperature-independent uncertainty factor Uj, 
which is interpreted as three times of the standard deviation: 

ln 𝑘𝑗  ~ 𝑁( ln 𝑘𝑗0, (
1

3
ln 𝑈𝑗)

2

 ) 

in which N(µ, σ2) reads a normal distribution with mean µ and 
standard deviation σ. The low discrepancy sequences 
proposed by Sobol [7] is used to generate random samples of 
reaction rate coefficients. Each sample corresponds to a set of 
rate coefficients and is then integrated into Cantera [8] to 
acquire the corresponding quantities of interest (QOIs).  

B. Identification of surrogate subspace 

Let f be a scalar-valued function of n variables x = [x1, x2, 
… , xn ]T.  

𝑦0 = 𝑓0(𝐱), 𝐱 ∈ 𝒳 ⊆  ℝ𝑛 

where it is assumed without loss of generality that 𝒳  is 
centered at the origin. For the UQ in combustion simulations, 
y are the QOIs such as the lift-length from the simulation of a 
turbulent lift flame, and x are the pre-factors of the elemental 
reaction rate constant. Let 𝒳  be equipped with a bounded 
probability density function, 𝜌x: ℝ𝑛 → ℝ+ , where 𝜌𝐱 >
0, x ∈  𝒳 and 𝜌𝐱 = 0, 𝐱 ∉  𝒳. The goal is to achieve the PDF 
of y, denoted as 𝜌𝑦.  



Existing dimension reduction methods [4, 9-11] can be 
applied to reduce the dimension of the input parameter space 
and the number of samples required for statistics. However, 
these methods suffer the issue that a lot of samples are 
required for identifying the low-dimensional subspace. 
Therefore, we propose to identify the subspace with the 
datasets from homogeneous reactors and laminar flames at 
the representative thermo-chemical conditions of target 
turbulent combustion applications. Then, each of such simple 
model, 𝑦𝑖 = 𝑓𝑖(𝐱),  will lead to a subspace spanned by one or 
several sensitive directions ui. Combine them together will 
lead to a comprehensive subspace, i.e., [u1, u2, …, um ], 
expected to work for the target turbulent combustion 
applications. However, the combination will result in a 
subspace whose dimension is higher than acceptance.  

To tackle above challenge, we propose to use a low 
dimensional subspace to approximate the PDF of yi, which 
contains less information than approximating the high 
dimensional function 𝑓𝑖(𝐱). The approximation formulated as  

𝑦𝑖 = 𝑓𝑖(𝐱) ≈ 𝑓𝑖(𝐒𝚲𝐒𝑻𝐱)                         (1) 

In which S is a 𝑛 × 𝑟 matrix with 𝑟 ≤ 𝑛, and STS = Ir. 𝚲 is a 
𝑟 × 𝑟 diagonal matrix, whose diagonal component functions 
as a rescaling factors on the orthogonal projection operator 
SST. The intution for introducing 𝚲 is to compensate the error 
due to applying same projection for all of 𝑦𝑖.  

   The identification of S and 𝚲  is done by multi-object 
generitic evolution algorithm, subjected to following 
minimization problem, 

min
𝑆,𝚲 

𝐽𝑆𝐷 (𝑃𝐷𝐹(𝑓𝑖(𝐱)), 𝑃𝐷𝐹(𝑓𝑖(𝐒𝚲𝐒𝑻𝐱)))         (2) 

In which JSD is the Jensen-Shannon divergence [12] for 
measuring the difference between two PDF. The JSD 
between p(y) and q(y) is defined as  

𝐽𝑆𝐷(𝑝, 𝑞) =
1

2
∫ (𝑝 log

𝑝

𝑀
+ 𝑞 log

𝑞

𝑀
) 𝑑𝑦             (3) 

In which 𝑀 = (𝑝 + 𝑞)/2. 

III. DEMONSTRATION 

The identification of one-dimensional surrogate subspace 
is demonstrated with a 33-step hydrogen mechanism with 
both the reaction rate and the uncertainty factor for the pre-
factor A in the rate constant comes from Konnov. [13]. In 
such case, the matrix S is a column vector. 

Figure 1 shows the PDFs of laminar flame speed for the 
stoichiometric mixture of H2/air at 300 K and one 
atmosphere. The solid line shows the PDF acquired by 
sampling from the entire parameter space, and it 
approximately follows a Gaussian distribution. The PDF 
acquired by sampling over the surrogate subspace is shown 
as dash line, and is very close to the one from the entire space. 
The difference on the standard deviations acquired by 
sampling the entire space and the surrogate subspace is 2%. 
In addition, the surrogate subspace shows similar 
performance on the ignition delay time and the extinction 
time for PSR, which are not shown here due to limited space.  

In a summary, we have successfully demonstrated a one-
dimensional surrogate subspace, which can dramatically 
reduce the number of samples for acquire the PDF of  𝑦𝑖 . 

Further demonstration on the turbulent combustion 
simulation is under-going. 

 

 

 
Fig.1. The PDFs of the laminar flame speed achieved by sampling the 

entire parameter space and the surrogate subspace. 
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Abstract— The ignition of n-hexane/air mixture, both at
constant volume autoignition and variable volume engine
conditions, is investigated using algorithmic tools generated
from Computational Singular Perturbation (CSP), on the
basis of two chemical kinetics mechanisms; one including and
another one excluding third-stage O2 addition reactions.

I. INTRODUCTION

Cleaner and more efficient internal combustion en-
gines have been the focus of industrial and academic
research. One promising combustion technique to achieve
such engines is homogenous charge compression ignition
(HCCI), in which well-mixed fuel and oxidizer are com-
pressed to the point of auto-ignition [1]. However, the
combustion timing of the HCCI engines is hard to control,
which requires a comprehensive understanding of the auto-
ignition process [2].

The auto-ignition process is controlled by the low-
temperature oxidation of hydrocarbons and detailed kinetic
models have been developed to predict the ignition of the
major components of liquid fuels [3]. The reaction frame-
work for hydrocarbon oxidation is based on the classical
low-temperature reaction mechanism, which involves two
stages of O2 addition and produces keto-hydroperoxides as
the main chain-branching intermediates. Additional chain
propagation pathways (via cyclic ethers) and chain termi-
nation pathways (via concerted HO2 eliminations) com-
pete with the main chain branching pathway (via keto-
hydroperoxides), and thereby alter the ignition timing.
However, recent work by Wang et al. [4] observed ad-
ditional radical chain-branching intermediates in the low-
temperature oxidation of alkanes, and they proposed a
third-stage O2 addition reaction scheme. The new proposed
reaction mechanism predicts the formation of the additional
radical chain-branching intermediates [4], which are found
to promote the auto-ignition and advance the combustion
phasing of HCCI engines at lower temperatures (e.g., 500-
700 K), when n-hexane is considered as a surrogate fuel
[5]. The promotion of auto-ignition from the new reaction
scheme was also observed in simulations of 2-methylhexane
ignition [4].

Based on these previous works, it is postulated that the
third-stage O2 addition reaction scheme alters the ignition

process significantly.
Therefore, two kinetic models of n-hexane oxidation were

adopted in this work; i.e., the model without third-stage O2

addition reactions by Zhang et al. [6] and the model with
third-stage O2 addition reactions by Wang et al. [5].

Algorithmic tools derived from the CSP methodology
were used in order to elucidate how the third-stage O2 addi-
tion reaction scheme promotes the n-hexane auto-oxidation
firstly in an ideal reactor (i.e., homogenous batch reactor)
and secondly in HCCI engine [5].

II. CHEMICAL KINETICS MODELS

Details of the two kinetic models of n-hexane oxidation,
which were adopted in the 0-D auto-ignition and HCCI
ignition simulation, can be found in the original papers
by Zhang et al. [6] and Wang et al. [5]. The “Zhang
model” consists of N=1118 species and K=4808 reversible
reactions, while the “Wang model” (which includes addi-
tional O2 reactions) consists of N=1188 species and K=4959
reversible reactions. In the following discussions, we refer
to the “Zhang model” as the C6 model, while the “Wang
model” is referred to as the C6+O2 model. Moreover, the
symbols “f” and “b” when met in the reactions, stand for
forward and backward directions, respectively.

III. RESULTS

A. Autoignition in a Constant Volume Reactor

The adiabatic homogeneous isochoric autoignition of an
n-hexane/air mixture was first studied at various initial
temperature, pressure, and equivalence ratio conditions.

It was found that the ignition delay time provided
by the C6+O2 mechanism is always smaller than that of
the C6 mechanism, especially at low initial temperatures
(T(0)=600 K) (min 39% and max 46%), regardless of the
initial pressure (p(0)=20 and 60 atm) or the stoichiometry
(φ = 0.4 and 1) of the system. These findings suggest that
it is mainly the low temperature radical chain branching
chemistry that is different between the kinetic models.

Also, it was found that the fast explosive time scale
τe,f of the extended C6+O2 kinetics mechanism has al-
ways a smaller value than τe,f of the C6 mechanism,
throughout the explosive stage. This feature explains why



the C6+O2 mechanism has always a smaller tign than the
C6 mechanism. In order to investigate further this finding,
the Timescale Participation Index (TPI) was used and the
reactions that contribute the most to the generation of τe,f
were identified [7], [8].

The analysis revealed that reaction groups R18f , R13f

and R12f , included only in the extended mechanism, play
important role favoring the explosive character of τe, f
and, therefore promoting ignition, from the very beginning
and for the most part of the process. Reaction groups
R14f and R15f (also included exclusively in the extended
mechanism) provide quite small contributions, the first one
opposing and the second favoring the explosive character
of τe,f . Moreover, the role of reaction groups R16f , R11f ,
R17f and R10f , the first four favoring and the latter opposing
the explosive character of τe,f , is considerably decreased in
the extended mechanism case. Likewise, the contribution
of R7f is decreased but in much smaller scale, in the
extended mechanism case. On the other hand, the effect of
reaction group R4f is increased, during the most part of the
autoignition process, therefore contributing to the shorter
ignition delay time in the extended mechanism case.

TABLE I
THE REACTION GROUPS PROVIDING SIGNIFICANT CONTRIBUTION TO

THE GENERATION OF τe,f ; F: NC6H14 , R: C6H13 , Q: C6H12 ,
Q’: C6H11 , P: C6H11Q. REACTION GROUPS IN BOLD ARE THOSE

THAT ARE INCLUDED ONLY IN THE EXTENDED MECHANISM [5].

R4 RO2 ↔ QOOH R12 P(OOH)2 + O2 ↔ OOP(OOH)2
R5 RO2 ↔ olefin + HO2 R13 OOP(OOH)2 ↔ KDHP + OH
R6 QOOH + O2 ↔ O2QOOH R14 T(OOH)3 ↔ ODHP + HO2

R7 O2QOOH ↔ KHP + OH R15 T(OOH)3 ↔ DHPCE + OH
R8 O2QOOH ↔ OHP + HO2 R16 KHP ↔ OQ’=O + OH

R10 P(OOH)2 ↔ OHP + HO2 R17 HPCE ↔ products + OH
R11 P(OOH)2 ↔ HPCE + OH R18 KDHP ↔ products+OH

B. Autoignition in a Variable Volume HCCI Engine

In the constant volume autoignition simulations, only a
single stage ignition event was observed. However, hydro-
carbon fuels typically display two-stage ignition charac-
teristics. Under HCCI engine conditions, it is common to
observe a low temperature heat release (LTHR) that relates
to a first-stage ignition delay time, followed by a high
temperature heat release (HTHR) that relates to the second-
stage ignition delay time.

The ignition of n-hexane/air mixture in HCCI environ-
ment was investigated using Chemkin-PRO in an adiabatic
single-zone HCCI engine model. The input for the HCCI
engine simulation was the same as that in Ref. [5], e.g., a
mixture of n-hexane/air at an intake pressure p(0) of 1 atm,
intake temperature T(0) of 336 K, and equivalence ratio φ
of 0.4.

In the HCCI case, the process is characterized by a 2-step
ignition. It was found that each step is characterized by a

distinct set of explosive timescales τe and that the second
stage is highly related to the thermal character of the system.

A comparison of the fast explosive timescales τe,f of
both mechanisms reveals that τe,f in the case of the C6+O2
mechanism, is always faster than that of C6. This explains
why the C6+O2 mechanism attains a shorter ignition delay
time. Although the difference of τe,f between the two
mechanisms appears more pronounced in the second rather
than in the first stage, it is the first stage that relates to the
chemical runaway of the process, and therefore it determines
the evolution of the second stage that follows.

Therefore, the analysis during the first stage ignition
revealed the following:
• Reaction groups R18f and R12f , which are included

only in the C6+O2 mechanism, play significant role
in promoting ignition, although their effect diminishes
with time.

• The effect of reaction groups R16f and R7f , which
both favor the explosivity of the mixture, diminishes in
the C6+O2 mechanism. The same applies for reaction
groups R10f and R8f , which both favor the dissipative
nature of τe,f , therefore tend to retard ignition.

• The effect of reaction groups R6f and R5f is increased
in the C6+O2 mechanism, the first favoring and the
second opposing the explosive character of τe,f .

• The net effect of reaction group R4 is always positive
when using the C6+O2 mechanism, thus promoting
ignition, and is much stronger when compared to the
net effect in the case where the C6 mechanism is used;
in the latter case the net effect is negative at the start
of the process and then gradually becomes positive.
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I. INTRODUCTION

In our 2009 paper [1], we demonstrated the effectiveness
of the G-Scheme framework with reference to a number of
test models, together with an identification of the critical
areas that were in need of further theoretical and compu-
tational refinements. In this communication, we report on
enhancing the algorithm performance.

II. PROBLEMATICS OF THE G-SCHEME

To exploit the full potential of the G-Scheme, it is
desirable that the fast subspace dimension be identified, all
along the system evolution, in a stable and possibly maximal
way because the time step at which the integration proceeds
depends on this determination.

Futhermore, when the problem is nonlinear, the largest
fraction of work load in the G-Scheme relates to the
temporal update of the CSP Basis∗. This work load can
be estimated for the calculation of the Jacobian matrix as
being of O(N1.5) and for the eigensystem (eigenvectors &
eigenvalues) of O(N2.5). It is therefore essential for the
success of the solver to pursue all means to minimize the
associated work load.

This communication will specifically address these two
aspects, namely, (i) a criterion for the identification of the
fast subspace dimension, and (ii) a criterion to reuse the CSP
Basis as much as possible during the system evolution.

A. A stable criterion for the identification of the fast sub-
space dimension

In the CSP Method [2], the dimension, dim(T), of the
fast subspace T is defined as the largest number of time
scales that provides a negligible contribution δxifast to the
change of the state vector δxi, within the limit of accuracy
specified by the user δxierror, on a time period of the order
of the fastest of the active time scale τT .

To make this statement computable, one has first to ex-
press the vector field g with respect to the frame of reference
induced by the matrix A of the right eigenvectors of the
Jacobian matrix, Jg , of g, that is, first (i) to cast g = Af ,

∗We refer to the collection of mathematical objects involving the Jaco-
bian, the eigenvectors, and the eigenvalues as the CSP Basis.

where the mode amplitude vector f is defined as f = A−1g,
and then (ii) to partition A in slow (h), active (a), and fast (t)
subspace contributions: g = Ahf

h + Aaf
a + Atf

t. Given
that the modes vary with time, one has to estimate the overall
contribution of the term gt = Atf

t to check if it is indeed
negligible over τT .

Operatively, one can define dim(T)=N-T, where T is the
smallest integer lying between 1 and N , which satisfies
the following inequality† for each component of the N -
dimensional state vector x:{
Min {T ∈ (1, N)} : δxifast ≈ τT

∣∣aitf t∣∣ < δxierror = True
}

(1)
where the error vector is defined as δxierror = rtoli|xi| +
atoli.

Implicit, in the criterion (1), is the approximation of
keeping constant gt = Atf

t over a time period of the
order of τT . In contrast, both the mode direction At and
its amplitude f t vary with time. Leaving aside the variation
of At, the evolution of f t can be approximated, at any time
tn, as

f t(t = tn + τ) = eτΛtf t0(t
n). (2)

Because of this result, the approximation of keeping constant
the value of the fast mode amplitudes over a time period of
the order of τT overestimates the contribution of the modes
with large negative real parts.

As a consequence, criterion (1) might provide a too
conservative estimate of the fast subspace dimension, which
might be also affected by numerical noise since the fast
mode amplitudes are typically small but not persistently so
with time.

We recall that smaller values of dim(T) imply smaller
integration time steps in the G-Scheme integration, i.e., in a
larger number of time steps to cover a given time period of
interest, with the associated extra cost.

A more accurate estimate of the fast mode contribution
in (1) can be obtained by recasting it as an integral, where
we retain the functional dependence of f t with time, albeit

†In the application of the criterion defined by Eq. (1), a special care
is required to manage the contribution of pairs of complex conjugate
eigenvalues and eigenvectors.



neglecting a possible rotation of At, and then to replace
f t(t) with f t0e

Λtt according with Eq. (2), where f t0 is set
as the value of the fast mode amplitudes at the beginning of
a time interval of duration τT , so that:

δxifast ≈
∫ τT

0

aitf
t(t)dt ≈

∫ τT

0

aitf
t
0e
λttdt. (3)

The last integral can be solved in closed form to provide the
sought after form of the criterion:

{Min {T ∈ (1, N)} :

δxifast ==

∣∣∣∣∣aitf t0 1− eλ
tτT

λt

∣∣∣∣∣ < δxierror = True

}
.

(4)

B. Reuse of the basis vectors

It can be shown that the terms on the diagonal of the
Jacobian matrix, Jg , have the meaning of reciprocal of time
scales, and thus their time rate of change is a manifestation
of the action of nonlinearities. Therefore, we decided to
update the CSP Basis only when the norm of the relative
change of the diagonal of the Jacobian matrix of the vector
field is larger than a prescribed threshold (typically equal to
10%). We do not allow the CSP Basis to stay frozen for
more 10 than consecutive integration time steps.

III. RESULTS

In the following we will refer to (i) the original form of
the G-Scheme as M#0, (ii) the method with the new fast
subspace dimension detection as M#1, and (iii) the method
with the new fast subspace dimension detection and the reuse
of the CSP Basis as M#2.

A. A stable criterion for the identification of the fast sub-
space dimension

A comparison of the new and old criterion for the identi-
fication of the fast subspace dimension is offered in Fig. 1
for a test case involving the auto-ignition of a stoichiometric
n-heptane/air (T0=900 K, p0=1 atm) using the Curran mech-
anism for iso-octane oxidation [3] (561 species and 2538
reactions). Fig. 1 shows that the time evolutions of the fastest
(red symbols) and slowest (green) of the active scales, with
the new criterion are more stable than the ones provided by
the old criterion. The temperature evolution (black solid line)
is also smoother as a consequence of the smoother evolution
of the fastest (red symbols) scale. Table I indicates that
M#0 takes 672 steps to reach convergence while M#1 takes
455 steps for the same accuracy (as measured in term of
ignition delay time, τign). Because of the fewer integration
time steps, the CPU time drops from 269s to 175s.

B. Reuse of the basis vectors

The effectiveness of reusing the CSP Basis has been
verified for the same model problem and test case considered
in the previous section. The test demonstrated that the time
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Fig. 1. M#0 (left) and M#1 (right). Evolution of the fastest (red symbols)
and slowest (green) of the active scales, of the fastest (blue) scale, of the
temperature (black line); x-axis is the time step counter.

evolutions of the slow and fast subspace dimension detection
with the reuse of the CSP Basis are only slightly more noisy
than when the CSP Basis is updated at each time step.

We note that the total number of integration time step of
M#1 and M#2 is approximately the same, this implying that
the reuse of the CSP Basis does not translate in a penalty
on the number of integration time steps.

Table I indicates that M#0 takes 672 steps to reach con-
vergence while M#2 takes 449 steps for the same accuracy
(measured in term of ignition delay time τign). The CPU
time drops from 269s to 61s (a speed up factor of 4.4) .
The profiling of the solver indicates that the calculation of
the CSP Basis (although reused for 69% of the steps in this
case) takes about 52s (85.2%) of the total CPU budget of
61s. These figures address both the remaining bottleneck
of the solver but also the potential additional saving at hand
whenever a smarter way to compute the CSP Basis is found.

TABLE I
PERFORMANCE SUMMARY OF THE THREE METHODS

Method steps τign (s) CPU time (s)
M#0 672 (0 reused) 0.28932 2.692E+02
M#1 455 (0 reused) 0.28776 1.751E+02
M#2 449 (310 reused) 0.28776 6.054E+01
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Abstract— A hierarchical framework, Global Pathway Analysis 
(GPA), is presented to understand complex chemical kinetics. 
The behavior of the reacting system at macro level is bridged to 
the elementary reaction level by Global Pathways, which are 
the chemical pathways from an initial reactant species to a final 
product species. For each Global Pathway, its dominancy and 
effect on the system, such as these on radical production or 
consumption, are quantified to understand its contribution to 
the system. The non-monotonic relation between auto-ignition 
delays and ratios of toluene in its mixture with n-decane is 
analyzed as a demonstration. 

I. INTRODUCTION 
Numerical simulation plays an increasingly important 

role in the study of combustion. However, realistic chemical 
kinetic models describing the combustion process typically 
involve hundreds of species and thousands of reactions. Due 
to their large sizes and complicated coupled relations, it 
remains a formidable task to extract insights from the 
reaction system. Systematic and rigorous analytic tools are 
necessary to obtain useful information from massive 
simulation datasets. 

The early stage of analysis of chemical kinetics may start 
from timescale decoupling. This includes Computational 
Singular Perturbation (CSP) [1], Intrinsic low-dimensional 
manifold (ILDM) [2], and Chemical Explosive Mode 
Analysis (CEMA)[3]. Recently, a Global Pathway Selection 
algorithm (GPS) [4] is proposed to identify important Global 
Pathways for reacting systems, which are the chemical 
pathways that convert initial reactants to final products, 
based on atomic flux analysis. GPS has been used for 
effective chemical kinetic mechanism reduction [4, 5]. In 
this study, Global Pathways is used to formulate an 
automatic and quantified framework to understand the 
complex chemical kinetics. 

 

II. METHODOLOGY 
As illustrated in Fig 1, a hierarchical model to analyze 

chemical kinetics is proposed. Other aspects such as 
transport are not focused in the present work. The objective 
is to find the elementary reactions controlling the phenomena 
of interest in a complex reacting system and underlying 
connections among different species. Therefore, it is 
necessary to formulate an interface between the behavior of 
the system and the elementary reactions. For this purpose, 
Global Pathways are identified using GPS algorithm [4] for 
considered source/sink pairs of species. The source species 
are usually components of the fuel or the oxidizer which are 

providing C, H, and O atoms, and the sink species are usually 
final products which are absorbing C, H, and O atoms. These 
Global Pathways provide a simplified representation of the 
reacting system, yet reflecting the key chemical information 
of species conversion. Each arrow (à) in a Global Pathway 
is called a conversion step. 

 
Fig 1. A hierarchical model to analyze complex chemical kinetics, using 

H2/air combustion as a demonstration. 

Then, for the identified Global Pathways, their 
dominancy and effects on radical production and 
consumption are quantified. The effects on other aspects 
such as heat release and entropy production can be quantified 
as well in a similar way but are not focuses of present work. 
These quantities provide an overview of each Global 
Pathway and explain that how these Global Pathways 
compete with each other and affect the reacting system 
differently. Three quantities are defined to analyze the 
system, where the detailed definition can be found in Ref. [6]. 
They are: (i) The dominancy of a Global Pathway, 𝐷"#,% , 
represents the fraction of the e-th atoms (e.g., C atoms) that 
are going through this Global Pathway. It ranges from 0 to 1. 
(ii) The net radical production rate associated with a Global 
Pathway, 𝑅'( , and (iii) the net radical production rate 
associated with the conversion step from the i-th species to 
the j-th species, 	𝑅*→, . As this hierarchical framework is 
based on the analysis of Global Pathways, this methodology 
is hereafter referred as Global Pathway Analysis (GPA).  

III. RESULTS AND DISCUSSION 
A demonstration is given in this section using simulation 
results of zero-dimensional reactors (from Cantera [7])  to 
illustrate the analysis process of complex chemical kinetics 
with GPA framework. The accuracy/validity of the kinetic 
mechanisms themselves (e.g., their possible discrepancies 
with experimental results) is not the concern of this work. 

Complex
Reacting system

Elementary reactions
• O2 + H + M = HO2 + M
• …

H2/air combustion

Global Pathways (GP)
• H2 à HO2 à H2O2 à OH à H2O
• H2 à H à OH à H2O

Conversion steps
• H2àH
• H à HO2

• HO2 à H2O2
• …



Instead, GPA provides insights to interpret behavior of the 
system shown in the simulation results in terms of the 
coupling relation between elementary reactions.   
 Normal-alkanes and aromatics are two common classes 
selected in surrogate fuel model. The mixture of n-decane 
(C10H22) and toluene (C6H5CH3) is chosen as the fuel to be 
investigated in this section with a relatively compact kinetics 
model [8]. τign of the stoichiometric mixture of fuel/air of 
different n-decane/toluene volume ratio at 1000 K is 
illustrated in Fig. 2. τign of pure n-decane is shorter than that 
of pure toluene, as shown in Fig. 2. One may expect that τign 
of the mixture of n-decane and toluene is in between, as in 
Fig. 2(a). However, this is not always the case according to 
the kinetic model by Chaos et al [8]. At 10 atm, τign firstly 
decreases, then increases as the ratio of toluene increases, as 
shown in Fig. 2(b). These trends may depend on the kinetics 
model employed. However, this work only focuses on the 
interpretation of an existing kinetic model.  

 
Fig. 2. τign of stoichiometric n-decane/toluene/air mixture for different fuel 

compositions at (a) P = 1atm and (b) P = 10 atm. 

To understand this non-monotonic relation between fuel 
composition and τign shown in Fig. 2(b), Global Pathways are 
identified from simulation results. The most dominant 
Global Pathway identified from the auto-ignition of n-decane 
is GP-dec, and the one from the auto-ignition of toluene is 
GP-tol.  

C10H22 à C10H21 à C6H13-1 à C6H13-2 à C3H6 à C3H5 à 
C3H5O à C2H3CHO à C2H3 à HCO à CO à CO2 

(GP-
dec) 

C6H5CH3 à C6H5CH2 à C6H5CH2O à C6H5CHO à 
C6H5CO à C6H6 à C6H4O2 à C5H4O à C5H5O à n-C4H5 
à C4H4 à i-C4H3 à HCCO à CO à CO2 

(GP-tol) 

 
𝑅"# of these Global Pathways are illustrated in Fig. 3, for 
mixture n-decane/toluene with volume ratio of 1:9 at 10 atm, 
where τign is close to the minimal in Fig. 2(b). It can be found 
that, GP-tol firstly produces radicals then consumes radicals. 
In contrast, GP-dec firstly consumes radicals then produces 
radicals. This means that, these two Global Pathways 
provide radicals for each other when the other is consuming 
radicals, and this coupling effect increases the overall 
reactivity. Therefore, the mixture of toluene and n-decane 
may autoignite faster than the neat fuel (pure toluene or n-
decane).  

 
Fig. 3. Global Pathways during auto-ignition at 10 atm for mixture of n-

decane/toluene (volume ratio = 1:9) 

IV. CONCLUSION 
A hierarchical framework, Global Pathway Analysis (GPA), 
to understand the chemical kinetics is proposed. The behavior 
of the reacting system at macro level is bridged to elementary 
reactions by Global Pathways. An explanation for the non-
monotonic relation at high P between τign and toluene ratio 
in its mixture with n-decane is provided using GPA. Two 
identified Global Pathways provide radicals for each other 
when the other is consuming radicals. This increases the 
overall reactivity for the mixture comparing to the neat fuels. 
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Horizontal species lumping using structural
information from a mechanism generator

Martin Hilbig∗, Lars Seidel∗, Fabian Mauss∗
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Abstract— In the present work we suggest an a priori
lumping method for chemical species in an gas phase fuel
oxidation scheme. In contrast to prior development we utilize
structural information of individual species which originate
from a mechanism generator. The suggested method yields a
closer agreement to the detailed scheme than the previously
suggested evaluation of thermodynamic properties.

I. INTRODUCTION

As reported by Tomlin et. al. [1] due to strong nonlinear
nature of chemically reactive systems it is quite tough to find
a priori assumptions for an automatic lumping procedure. At
the 5th Model Reduction Workshop the authors presented
an a priori lumping approach based on the evaluation of
thermodynamic data [2].

The idea behind that is that similar isomers have similar
thermodynamic data. This method was successfully applied
for the reduction of n-heptane mechanism [3].

One considerable drawback of this approach is that it
heavily relies on the quality of the given thermodynamic
data. It can be observed that the same thermodynamic data
are often used for all isomers - which groups them into
one lumped species. Further thermodynamic data carry no
structural information. In the aforementioned lumping of the
n-heptane scheme [3] it was found that lumping together
different ring sizes of cyclic ether with the same sum
formula and similar thermodynamic data leads to deviations
from the detailed model.

This implies that the lumping procedure would strongly
benefit if structural information would be available. In this
work we evaluate the incorporation of species structure
information into the lumping process. The structural in-
formation are obtained from a mechanism generator firstly
presented in 2011 [4].

II. MECHANISM GENERATOR OVERVIEW

The mechanism generator developed by the present au-
thors uses a rule based approach and operates on the
graphical structure of chemical species.

The species structures are stored in the document
database CouchDB [5]. The reactions and structures are
iteratively and semi-automatically generated by applying
29 reaction class based on rules of the work of Ahmed
[6], Mehl [7] and Blurock [8] and others including low-
temperature kinetics. If those classes produce new species

structures they are added to the database and we again
apply our reaction rule classes until no new reactions are
generated.

In order to generate an oxidation chemistry for a fuel, a
base chemistry along with its structures needs to be provided
by the user. This chemistry describes the combustion of
smaller species (typically H2 and C1-C4/C5) which can not
be described by classes.

The database is then exported into standard format mech-
anism file and a RMG [9] input file for it’s group additivity
based molecular and thermodynamic properties estimator in
conjunction with MOPAC [10].

III. STRUCTURALLY GUIDED HORIZONTAL CHEMICAL
SPECIES LUMPING

After fully populating the Mechanism database and gen-
erating the corresponding molecular and thermodynamic
properties, our lumping tool queries the database for all
species structures (sorted by structural identifications) and
groups those species according to their sum formula.

Afterwards adjusted thermodynamic and molecular prop-
erties are generated (for the lumped species) and a new
mechanism file in standard format is written.

A. Identification and grouping

Using CouchDB’s ”Map/Reduce” feature a specific doc-
ument in a mechanism database contains a view which
returns all species structures, accompanied by an identifying
structure describing string. CouchDB Map/Reduce views
are referential-transparent functions, which are called for
every document in a database and can return arbitrary key-
value-pairs. For example one such function checks whether
it’s input is a chemical species and whether the species
is a cyclic ether. If this is the case the function returns
the species’ document id, an identifier string (e.g. ”cyclic-
ether”), whether the cyclic-ether contains a primary carbon,
the ring size of the ether and the sum formula of the
ether. These key-value-pairs are then grouped together by
sum formula and functional group identifiers. The group
identifiers are based on: radical carbons, carbonyl, peroxy,
hydroperoxy, oxi radical, alkenyl groups and combinations
thereof. Further we take into account if the functional
groups are on a primary or secondary carbon and the
distance between them (if there is more than one group).



Fig. 1. Predicted ignition delay times for n-dodecane / air mixture
at different fuel / equivalence ratios. Symbols: detailed scheme; Dashed
line: lumping based on Gibbs free energy; Solid line: lumping based on
structural information.

The list of species to be lumped into a representative specie
is used to calculate new reaction rates and thermodynamic
data as explained in [3].

IV. RESULTS

A. Detailed scheme

The detailed scheme was generated with the rules out-
lined above and the NTUA [11] C1-C4 chemistry was
chosen as base chemistry. The chemistry was chosen to
underline that the method can be applied to any reaction
scheme and is not limited to schemes developed by the
author. The scheme consists of 720 species and 11917
reactions (backward and forward).

B. Lumped schemes

Both horizontal lumping strategies have been applied to
the detailed scheme.

The lumping based on a maximum deviation of 1kJ in
Gibbs free energy between 300 - 3000K identified 74 repre-
sentative species resulting in a mechanism with 460 species
and 11875 reactions (back and forward). This scheme shows
a significant deviation from the detailed one in the low
temperature regime (figure 1).

The lumping based on the evaluation of functional groups
identified 74 representative species as well. But results in
493 species and 11821 (back and forward) reactions. This
lumped scheme shows a much better agreement with the
detailed scheme over the whole temperature range (figure
1).

The CPU time is reduced by about 25% for both lumped
schemes.
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Abstract—In the present study, reduced kinetic models, 

including fuel-specific reduced models and a universal reduced 

foundational fuel chemistry model for jet fuel combustion, are 

developed based on the recently developed HyChem models. 

The HyChem approach takes advantage of the de-coupling 

between fuel pyrolysis and oxidation of the pyrolysis products 

that underlies the basic physics of real, liquid fuel combustion 

processes and the diagnostic capabilities currently available.  

The resulting HyChem model of real jet fuels is comprised of a 

“1-species” lumped model of a jet fuel and a detailed 

foundational reaction model for the pyrolysis and oxidation 

H2/CO/C1-4/one-ring aromatics, and is thus already 

substantially reduced in size.  The foundational fuel chemistry 

model may be further reduced through skeletal reduction using 

directed relation graph (DRG) and sensitivity analysis, and 

timescale reduction using the linearized quasi-steady state 

approximations (LQSSA). This two-stage reduction approach 

is applied on one conventional and two alternative jet fuels, 

resulting in fuel-specific reduced models with 31, 26, and 31 

species, respectively. A universal reduced model with 35 species 

is further proposed for the three fuels, which features 

programmable fuel thermodynamic and transport properties 

and fuel cracking reaction parameters, as well as a shared 

reduced oxidation core for the fuel cracking products. The fuel-

specific and universal reduced models are validated against the 

detailed HyChem models for auto-ignition, perfectly stirred 

reactors (PSR), 1-D laminar premixed flame speed, and 

extinction of premixed and non-premixed counterflow flames. 

I. INTRODUCTION 

Jet fuels are comprised of a large number of components 
with different chemical and physical properties. In addition, 
combustion of jet fuels results in myriad intermediate species 
during the pyrolysis and oxidation processes. As such it is 
highly challenging to model the chemical kinetic behaviors of 
real jet fuels. Recently, a hybrid approach, “HyChem,” was 
proposed to model high-temperature combustion of practical 
jet fuels [1, 2], and HyChem models have been developed for 
multiple real jet fuels. The HyChem approach takes 
advantage of the de-coupling between fuel pyrolysis and 
oxidation of the pyrolysis products that underlies the basic 
physics of real, liquid fuel combustion processes and the 
diagnostic capabilities currently available. The resulting 
HyChem model of real jet fuels is comprised of a lumped 
model of fuel pyrolysis and a detailed foundational reaction 
model for the pyrolysis and oxidation of the primary 

intermediates of jet fuel pyrolysis and oxidative pyrolysis. 
Key species include hydrogen, methane, ethylene, propene, 
iso-butene, 1-butene, benzene and toluene. Because the 
lumped model is essentially a 1-species model, the HyChem 
models are already extremely compact. In essence, the 
approach uses the physical phenomenon to derive the lower-
dimension model, rather than starting at a higher complexity 
(e.g., using the surrogate and detailed reaction mechanism 
approach). 

The HyChem model for each fuel consists of 119 species 
and 843 reactions, in which seven lumped reaction steps are 
used to describe the fuel pyrolysis, and the oxidation kinetics 
of the fuel pyrolysis products is described by USC Mech II 
[3]. The kinetic parameters of the HyChem model were 
determined though time-history data of shock-tube and flow-
reactor experiments. The HyChem models have been 
validated against a variety of experiments, including ignition 
delay, laminar flame speed, and counterflow extinction [1, 2]. 

The emphasis of the current work is the reduction of the 
foundational fuel chemistry model. In particular, compact 
reduced models are developed based on the HyChem models 
for three target fuels to obtain CFD-amenable models for 
more efficient simulations. The three target fuels include a 
conventional petroleum-derived Jet-A fuel (POSF10325, Cat 
A2), and two alternative jet fuels: one (POSF11498, Cat C1) 
features a low derived cetane number (DCN) and is composed 
of highly branched iso-alkanes, and the other (POSF12345, 
Cat C5) features similar chemical properties but vastly 
different physical properties (flat boiling curve) with Cat A2. 
More details of the fuels can be found in Refs. [4, 5]. 

II. METHODOLOGIES AND RESULTS 

A. Fuel-specific reduced HyChem models 

The reduction is based on reaction states sampled from 
auto-ignition and perfectly stirred reactors (PSR). The 
reduction parameter range covers pressure of 0.5-30 atm, 
equivalence ratio of 0.5-1.5, initial temperature of 1000-1600 
K for auto-ignition, and inlet temperature of 300 K for PSR. 
Skeletal reduction with directed relation graph (DRG) [6] and 
sensitivity analysis [7] is first applied to eliminate 
unimportant species and reactions from the detailed HyChem 
models. In DRG, H radical is selected as the starting species 
and an error threshold of 0.3 is specified for all the three target 
fuels. After the skeletal reduction with DRG, the resulting 
skeletal models are further reduced with sensitivity analysis 



with ignition delay and extinction residence time of PSR as 
target parameters. Fig. 1 shows the accumulative worst-case 
relative error in the target parameters as function of the 
number of retained species in sensitivity analysis for Cat A2, 
with the vertical dashed line indicating the error threshold. 
The error threshold for each fuel in sensitivity analysis is 
chosen where the rapid increase in worst-case error of target 
parameters starts to occur, that is 20% for A2 and C5, and 
35% for C1, respectively. The final skeletal models consist of 
41, 34, and 41 species for Cat A2, C1, and C5, respectively. 
As the last step in the skeletal reduction, reactions 
unimportant for all the remained species are eliminated by 
comparing the contribution of each reaction to each remained 
species using an error threshold of 20% [8]. In the second-
stage of the reduction, linearized quasi-steady-state 
approximations (LQSSA) [9] are further applied on 10, 8, and 
10 global QSS species for Cat A2, C1, and C5, respectively. 
The QSS species are removed from the transport equations 
and are analytically solved using internal algebraic equations 
with a graph-based method [9]. Table I provides the summary 
of the detailed, skeletal and reduced models for the three 
target fuels. 

Fig. 2 shows selected validations of the reduced and 
skeletal models against the detailed HyChem models for Cat 
A2, C1, and C5 for ignition delay and laminar flame speed. 
The reduced and skeletal models agree well with the detailed 
models over a wide range of conditions. Fig. 3 compares the 
maximum temperature of the flame as function of the 
reciprocal strain rate for non-premixed and premixed flames. 
The reduced models agree tightly with the detailed models 
along the entire curves including the turning points, which are 
the nominal extinction states of the flames, with the worst-
case relative error being approximately 15%. 

B. A universal reduced HyChem model 

Because the oxidation cores for the three target fuels are 
largely identical, a universal skeletal model is developed by 
combining the oxidation cores of three target fuels and using 
programmable fuel properties and fuel cracking reactions. 
Procedurally, the three skeletal models are first merged to 
obtain a universal skeletal oxidation core with 47 species and 
263 reactions after removing 37 reactions that are 
unimportant for all the three fuels. The three target fuels and 
their fuel-specific cracking reactions are replaced with 1 
nominal fuel species and 7 nominal fuel cracking reactions, 
of which the rates and stoichiometric coefficients are 
evaluated using a special subroutine. Among the 48 species 
(including the nominal fuel) in the universal skeletal model, 
13 species are identified to be global QSS species, and a 35-
species universal reduced model is finally obtained. 

Fig. 4 shows selected validations of the 35-species 
universal reduced model with Cat A2, C1, and C5 as the fuel 
respectively against the detailed models for ignition delay and 
laminar flame speed. It is seen that the universal reduced 
models agree slightly better with the detailed models than the 
fuel-specific reduced models. 

 
Fig.1 Accumulative worst-case error in the target parameters in sensitivity 
analysis as function of the number of retained species in the skeletal model 

for Cat A2. 

 

TABLE I. Sizes of the detailed, skeletal and reduced HyChem models 

 

Cat A2 Cat C1 Cat C5 

Species & 

Reactions 

Species & 

Reactions 

Species & 

Reactions 

Detailed 119 843 119 843 119 843 

Skeletal 41 202 34 182 41 200 

Reduced 31  26  31  

 

 

Fig. 2 Ignition delay (left) and laminar flame speed (right) at pressure of 
0.5, 1, 5, and 30 atm for Cat A2, C1, and C5, calculated with the detailed 

(solid lines), skeletal (dashed lines) and reduced (symbols) models, 
respectively. 
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Fig. 3 Comparison of the maximum temperature, Tmax, in counterflow non-

premixed (left) and premixed (right) flames as function of the reciprocal 
strain rate for Cat A2, C1, and C5, calculated with the detailed (solid lines) 

and reduced (symbols) models, respectively. 

 

 
Fig. 4 Ignition delay (left) and laminar flame speed (right) at pressure of 
0.5, 1, 5, and 30 atm for Cat A2, C1, and C5, calculated with the detailed 

(solid lines) and universal reduced (symbols) models, respectively. 

III. CONCLUSIONS 

The detailed HyChem models for real jet fuels, including 
Cat A2, C1, and C5, are systematically reduced for high-
temperature applications using DRG, sensitivity analysis and 
LQSSA. Fuel-specific reduced models with 31, 26, and 31 
species are obtained for Cat A2, C1, and C5, respectively. In 
addition, a 35-species universal reduced model is obtained 
using programmable fuel properties and fuel cracking 
reactions. The reduced models are validated against the 
detailed HyChem models for 0-D homogenous reactors, 
including auto-ignition and PSR, and 1-D diffusive systems, 
including laminar flame speed and extinction of premixed 
and non-premixed counterflow flames. The validation results 
show good agreements between the detailed and reduced 
models over a wide range of parameters. The compact 
reduced models are amenable for efficient CFD simulations 
with real fuel chemistry. 
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